金属学报, 2020, 56(9): 1185-1194 DOI: 10.11900/0412.1961.2020.00026

K4169合金循环加载过程中的微观组织演变

吴贇1, 刘雅辉1, 康茂东,1,2, 高海燕1,2, 王俊1,2, 孙宝德1,2

1 上海交通大学材料科学与工程学院 上海 200240

2 上海交通大学上海市先进高温材料及其精密成形重点实验室 上海 200240

Microstructure Evolution of K4169 Alloy During Cyclic Loading

WU Yun1, LIU Yahui1, KANG Maodong,1,2, GAO Haiyan1,2, WANG Jun1,2, SUN Baode1,2

1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2 Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China

通讯作者: 康茂东,kangmd518@sjtu.edu.cn,主要从事高温材料精密成型工艺及其组织和力学性能研究

责任编辑: 肖素红

收稿日期: 2020-01-17   修回日期: 2020-05-08   网络出版日期: 2020-09-11

基金资助: 国家自然科学基金项目.  51971142
国家科技重大专项项目.  2017-Ⅵ-0013-0085
航空科学基金项目.  2018ZE57012
上海交通大学新进青年教师启动计划项目.  18X100040027

Corresponding authors: KANG Maodong, Tel: (021)54745387, E-mail:kangmd518@sjtu.edu.cn

Received: 2020-01-17   Revised: 2020-05-08   Online: 2020-09-11

Fund supported: National Natural Science Foundation of China.  51971142
National Science and Technology Major Project of China.  2017-Ⅵ-0013-0085
Aeronautical Science Foundation of China.  2018ZE57012
Startup Fund for Youngman Research at SJTU.  18X100040027

作者简介 About authors

吴贇,男,1987年生,博士生

摘要

通过熔模精密铸造、循环加载和微观组织表征等方法研究了K4169合金循环加载过程中的微观组织演变特征,重点分析了不同循环周次后Laves相和δ-Ni3Nb相的变形和断裂特征。结果表明,在室温380 MPa应力幅值循环加载实验中,循环寿命主要取决于显微疏松体积分数,裂纹优先萌生于试样表面的显微疏松位置。Laves相的断裂不受循环周次的影响,在循环加载初期,显微疏松附近的长带状Laves脆性相容易开裂,其内部还产生平行排列的二次裂纹,成为裂纹扩展的敏感区域。δ-Ni3Nb层片呈现2种变形和断裂特征:沿长度方向的开裂;层片表面滑移和断裂。循环加载初期,显微疏松附近的δ-Ni3Nb层片容易产生沿长度方向的开裂,而随着循环周次的增加,远离显微疏松的δ-Ni3Nb层片表面滑移迹线逐渐增多直至滑移断裂。γ-Ni基体在循环加载过程中产生孪生变形特征,导致应变局部化程度加剧,进而使Laves相和δ-Ni3Nb层片周围产生应力集中。

关键词: K4169高温合金 ; 循环应力 ; 微观组织演变 ; Laves相 ; δ-Ni3Nb相

Abstract

K4169 nickel-based superalloy has been widely used to fabricate high-strength components in aircraft engine. When in service, especially affected by vibration and start-stop process, this alloy is inevitably affected by the external cyclic stress. Therefore, it is of great significance for researchers to understand the microstructure evolution in K4169 while cyclic loading. In the present study, the microstructure evolution of K4169 during cyclic loading has been examined and discussed in detail by using investment casting, cyclic loading and microstructure characterization methods. The cyclic loading test with stress amplitude of 380 MPa was carried out on a pull-push type fatigue machine at room temperature. The dependence of cycle times or fatigue life of specimens with different casting conditions on microporosity content has been discussed. Special emphases have been put on investigating the deformation and fracture characteristics of Laves and δ-Ni3Nb phases under the influence of microporosity. The results show that the cyclic life was mainly dominated by the content of microporosity. The crack initiation occurred mainly near the microporosity of the specimen surface. The specimen with high microporosity content exhibits the characteristic of complete brittle fracture, while the specimen with low microporosity content exhibits obvious transgranular fracture characteristics. In addition, the fracture of Laves phase was not apparently affected by cycle number. At the beginning of cyclic loading, the long-striped Laves phase near the microporosity was easy to crack, which became the sensitive area of crack growth, and extending in the manner of parallel secondary cracks. The δ-Ni3Nb plates near microporosity exhibited two obvious cyclic deformation and fracture characteristics depending on their arrangement (or growth orientation) relative to external loading axis: cracking along length direction (or denoted as branch cracking); and exhibiting slip lines and cracks on the surface of δ-Ni3Nb plates. At the initial stage of cyclic loading, δ-Ni3Nb plates were prone to crack along the length direction, while the surfaces of the δ-Ni3Nb plates far from microporosity appear the characteristics of slipping, bending and fracture in turn with the decrease of microporosity content or increase of cyclic cycles. Edge dislocations have been found within δ-Ni3Nb plates, indicating the transition from screw dislocations to edge dislocations under cyclic loading. Additionally, the twinning deformation of γ-Ni matrix during cyclic loading has been scrutinized through TEM and TKD analyses. The results have been linked to the evolutions of Laves and δ-Ni3Nb phases, i.e., the evolutions were influenced by the increase of strain localization around Laves and δ-Ni3Nb phases.

Keywords: K4169 superalloy ; cyclic stress ; microstructure evolution ; Laves phase ; δ-Ni3Nb phase

PDF (4614KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变. 金属学报[J], 2020, 56(9): 1185-1194 DOI:10.11900/0412.1961.2020.00026

WU Yun, LIU Yahui, KANG Maodong, GAO Haiyan, WANG Jun, SUN Baode. Microstructure Evolution of K4169 Alloy During Cyclic Loading. Acta Metallurgica Sinica[J], 2020, 56(9): 1185-1194 DOI:10.11900/0412.1961.2020.00026

K4169合金(对应国外牌号Inconel 718)是γ/γ"沉淀强化型铸造镍基高温合金[1~5]。该合金综合性能优异:在650 ℃时仍具有较高的强度、塑性以及良好的抗疲劳、耐腐蚀、耐氧化等特性,且铸造成型性、铸件质量可控性、焊接性能极佳[3,4]。因此K4169在航空领域有重要应用,可用于制造复杂形状承热结构件,如机匣、叶片、盘件等[6~8]。K4169合金用作航空部件,服役时会受到振动、转动或频繁起停等循环加载工况的影响,这使合金内部受到循环应力的作用,产生区别于单向加载的微观组织演变[9,10]。特别是在远低于合金屈服强度的循环应力幅作用下,也会产生局部区域的严重塑性变形或裂纹萌生。这显然与循环加载过程中微观组织的演变有关,因此研究循环加载时的微观组织演变及其对合金局部变形或断裂的影响,一直是一项重要课题[3,10]。K4169合金经标准热处理后,微观组织由基体γ-Ni、主要强化相γ"-Ni3Nb、次要强化相γ′-Ni3(Al, Ti)、δ-Ni3Nb相、MC型碳化物和少量未完全消除的脆性Laves相组成[11~13]。此外,合金中还可能存在显微疏松等铸造缺陷。作为典型的fcc结构材料,K4169合金对循环加载的响应主要表现为γ-Ni基体中特定滑移系的开动,即{111}γ<1¯10>γ[4]。随着循环加载的进行,局部区域位错增殖和累积,塑性应变累积,逐渐演变为驻留滑移带(PSBs),成为裂纹萌生的潜在区域[4,14]。在理想情况下(比如热等静压或锻造高温合金中,排除了缺陷的影响,或远离缺陷的区域),镍基高温合金这种fcc结构材料中的孪晶界附近是裂纹萌生的高发区域,同时也是应变局部化比较严重的区域,会对周围微观组织产生影响[4,14]。显然,微观组织在循环加载中产生形貌和结构演变,进而影响合金在循环加载中的应变局部化、裂纹萌生、扩展等变形和断裂特性,因而一直得到广泛研究。然而,过去的研究主要集中于基体与强化相,即γ/γ"的相互作用,而对其它微观相的研究还不充分,比如对δ-Ni3Nb相、Laves相以及它们与基体γ-Ni的相互作用的研究还不十分明确[15,16]

δ-Ni3Nb相属于正交晶系(oP8),与γ"-Ni3Nb相化学成分相近,区别在于密排面(010)δ、(111)γ"的堆垛顺序不同[17,18]。在980 ℃以下(如955 ℃)时效,纳米尺度的亚稳γ"-Ni3Nb颗粒中产生层错,以纯几何方式转变为稳定的δ-Ni3Nb层片[17,18]。所以,δ-Ni3Nb相的形成会消耗γ"-Ni3Nb相,在其周围出现γ"-Ni3Nb贫化区[3]。基于此现象,有关δ-Ni3Nb相对合金的循环加载承受能力产生2种观点:一是认为贫化区的出现使得局部区域缺少γ"-Ni3Nb相的强化作用,抵抗循环变形能力减弱;二是认为γ"-Ni3Nb相的贫化使局部区域位错不易塞积,有利于循环软化,减弱应变局部化效应,从而提高循环加载寿命[10,19]。目前,还没有相关报道明确指出δ-Ni3Nb相的实际效应,而且对δ-Ni3Nb相形貌和结构演变的相关研究还较少。Laves相是K4169合金中一种典型的hcp结构脆性相,主要化学成分可表示为(Fe, Ni)2(Mo, Nb),是由于凝固最后阶段Nb、Mo等元素在枝晶间区域偏聚而形成[20~22]。通常认为颗粒状的Laves相不会成为循环加载时裂纹萌生的敏感区域,而长条状Laves相则可能因为外加载荷幅值的不同而导致裂纹萌生或扩展[21]

可以看出,K4169合金中物相种类较多,特别是δ-Ni3Nb相、Laves相2种特殊组织的存在,会影响合金局部区域的循环加载变形。目前的研究还存在争议,而且在相同实验条件下对它们的系统性研究结果也比较缺乏。本工作基于熔模精密铸造制得K4169试棒,借助室温轴向应力控制循环加载实验,研究其循环加载变形过程中的微观组织演变规律,重点关注各物相的循环变形规律或开裂机制,为评价K4169合金整体的抵抗循环变形失效能力提供更可靠的依据。

1 实验方法

实验用K4169合金的化学成分(质量分数)为:Cr 19%,Fe 18.55%,Mo 3%,(Nb+Ta) 5%,Ti 0.9%,Al 0.5%,C 0.05%,Ni 余量。采用熔模精密铸造方法制造试棒,大致流程为:试棒形状和尺寸设计、蜡模模具设计与制作、注蜡、蜡模组装、蘸浆和喷砂、焙烧脱蜡、陶瓷模壳成型、熔炼浇注[23]。本研究设计了7组不同尺寸的试棒,主要尺寸差异在试棒中间部位,即热节直径不同,目的是改变平行段内的凝固速率,分别编号为1#~7#,热节直径分别为41.8、35.8、21.7、19.6、18.1、16.5和11.8 mm。热节直径较大(凝固速率较慢)的试棒预期会产生更多的显微疏松等铸造缺陷,反之则更少[24~26]。由此可以得到不同循环加载寿命的试样,为研究微观组织的演变规律提供便利。热处理前,从每组精铸试棒的热节区域取8 mm×8 mm×1.5 mm薄片,利用BX51M光学显微镜(OM)观察显微疏松形貌,并统计显微疏松面积分数(近似认为是体积分数)。经水磨砂纸(120~2000号)机械研磨至光亮且无显见划痕,显微疏松体积分数统计方法参考航标HB 20058-2011。根据所观察到的显微疏松尺寸特征,对每个试样拍摄4张50倍OM照片,并在显微疏松区域框选1 mm×1 mm范围,用来统计面积分数,最后计算平均值。之后将所有精铸试棒封管填充Ar气,在管式炉中进行标准热处理:1095 ℃×2 h,955 ℃×1 h,720 ℃×8 h,随后炉冷(约56 ℃/h)至620 ℃×8 h,随后空冷至室温[10]

热处理后,将试棒加工成循环加载试棒,尺寸如图1所示。室温轴向应力控制拉压循环加载实验在PWS-200电液伺服疲劳试验机上进行,具体加载条件为:应力幅值380 MPa,应力比-1,频率0.3 Hz,三角波。每个热节直径试样(1#~7#)的疲劳周次均是3根试样的平均值。考虑到试棒存在显微疏松,且未进行热等静压,本工作选定的应力幅值较低,该幅值约为预先测得的室温拉伸屈服强度的40%。采用TESCAN MIRA3场发射扫描电镜(SEM)对热处理后的原始微观组织、循环断裂后的断口形貌、断口附近和远离断口区域的截面微观组织进行观察和分析。其中,SEM样品经机械磨抛后,再用电解腐蚀的方法(15 g Cr2O3+10 mL H2SO4+150 mL H3PO4,电压5 V,电解10~60 s)选择性腐蚀掉γ-Ni基体,以便于观察各析出相的形貌。利用SEM搭载的Aztec X-MaxN80能谱仪(EDS)定性分析断口和金相试样中的析出相类别。为了明确析出相在循环加载前后的演变规律,采用JEM 2100F场发射透射电镜(TEM)对热处理后和循环断裂后的微观组织进行观察和分析。TEM试样的制样方法为:沿试棒的轴线方向切取薄片,机械研磨至约60 μm厚,随后冲出直径3 mm圆片,再用Gatan PIPS II 695精密离子减薄仪对圆片中心区域进行离子减薄,最终制得带有薄区的TEM试样。为了明确析出相和基体在循环加载后的局部取向差,利用SEM附带的AZtec Nordlys Max3探头分别对循环加载后的块体试样和薄片试样进行电子背散射衍射(EBSD)和透射Kikuchi衍射(TKD)数据采集,并用HKL-Channel 5软件对数据进行处理和分析。EBSD试样取自断口附近,经机械磨抛后,再用Vibrotech振动抛光机对试样表面进行振动抛光(SiO2悬浮液振动抛光2 h),以去除表面残余应力。TKD试样的制样方法与TEM试样一致。

图1

图1   循环加载试棒尺寸示意图

Fig.1   Dimension of the cyclic loading specimen (unit: mm)


2 实验结果

2.1 原始组织

图2为不同热节直径精铸K4169试棒(1#~7#)显微疏松的典型OM像。定量金相法统计的1#~7#试样显微疏松平均体积分数分别为4.78%、4.36%、1.52%、1.16%、0.79%、0.64%和0.53%。可以看出,随着热节直径减小,显微疏松体积分数逐渐减小。此结果与显微疏松形成的机理吻合,即热节直径越大,在凝固时越可能因为金属液来不及补充最后凝固区域(枝晶间)而产生显微疏松[24~26]

图2

图2   不同热节直径精铸K4169试棒显微疏松的典型OM像

Fig.2   Typical OM images containing microporosity of casted K4169 bars with hot spot diameters of 41.8 mm (a), 35.8 mm (b), 21.7 mm (c), 19.6 mm (d), 18.1 mm (e), 16.5 mm (f) and 11.8 mm (g) named specimens 1#~7#, respectively


标准热处理后,虽然显微偏析程度大幅减轻,但分布于枝晶间的析出相还有残留,这些微米尺度的析出相呈枝晶状的分布特征(图3a)。SEM和TEM形貌观察结果显示,枝晶间的不规则块状析出相为Laves相,而其周围伴生的层片为δ-Ni3Nb相(图3b和c)。由选区电子衍射(SAED)花样(图3d)可确定δ-Ni3Nb相与γ-Ni基体的取向关系为:(11¯1¯)γ //(02¯0)δ,[011¯]γ //[100]δ,与两者经典的取向关系相符[17,27]。热处理组织中基体为γ-Ni固溶体,体心四方结构的γ"-Ni3Nb颗粒弥散分布于基体中,如图3e和f所示。γ"-Ni3Nb作为强化相为合金提供了足够的强度,但在循环加载过程中需要综合考虑多种析出相的作用,如γ"-Ni3Nb相与δ-Ni3Nb相化学成分相同,局部含量近似成反比关系,这会改变局部区域的塑性变形累积过程。δ-Ni3Nb相不仅与γ"-Ni3Nb相成分相同,又与Laves相伴生,显然也需要重点分析其在循环加载过程中的形貌和结构演变规律。Laves相作为脆性相,应该重点分析其循环变形特征,尤其是应变局部化导致的断裂特征。这需要考虑Laves相的尺寸效应,一般长条状的Laves相比颗粒状的危害更大。利用OM对7组试样中的Laves相尺寸进行了统计,采用的尺寸为Feret直径[28],统计结果如图4所示。可以看出,Laves相尺寸从几微米到几十微米不等,但每组试样的Laves相Feret直径分布几乎一致,4~15 μm范围内的颗粒最多,而长条状Laves相的数量较少。此外,不同的热节直径(凝固速率)并没有显著改变Laves相在合金中的尺寸分布,可能是因为热节直径变化范围较小(直径41.8~11.8 mm)。同时,也可能与Laves相的形成条件有关,因为其总是在凝固最后阶段形成[29]

图3

图3   K4169合金在标准热处理态下微观组织特征的SEM像和TEM像

(a, b) SEM images showing precipitates

(c) TEM image showing precipitates

(d) selective area electron diffraction (SAED) patterns of γ-Ni and δ-Ni3Nb (e, f) bright- and dark- field TEM images of γ"-Ni3Nb, respectively (Inset in Fig.3f shows the corresponding SAED pattern)

Fig.3   Microstructure characteristics of K4169 alloy in standard heat treatment state


图4

图4   不同试样中Laves相Feret直径的分布规律

Fig.4   Distributions of Feret diameter of Laves phase in different specimens


2.2 循环加载寿命和断口特征

对7组不同热节直径的试样进行室温循环加载实验,得出各组试样的平均循环寿命在263~14120 cyc区间。分析了各种微观组织参数(如Laves相含量、(Laves+δ-Ni3Nb)含量、Laves相尺寸等)与循环寿命的关系,最终发现循环寿命受显微疏松体积分数的影响最显著,随显微疏松体积分数的增加而降低,如图5所示。Laves脆性相的影响不是主要因素,这可能与其尺寸有关。图4结果表明,Laves相的尺寸集中在4~15 μm范围内,呈颗粒状,并不会成为主要的裂纹萌生源。图6给出了有代表性的低循环周次(394 cyc)和高循环周次(5457 cyc)试样的断口特征。可以看出,开裂都源于表面的显微疏松,但整体断口形貌有较大差异。低循环周次试样的断口呈现明显的沿枝晶断裂特征,这是因为显微疏松一般产生于流动性差的凝固最后阶段,即产生于枝晶间,导致这些区域的优先断裂。低循环周次试样的断口中分布着大量的显微疏松,提供了内部裂纹萌生和扩展区,导致该试样整体抵抗循环变形和断裂的能力较差。而高循环周次试样的断口呈现明显的穿晶断裂特征,这是因为其显微疏松含量较少,该试样整体抵抗循环变形和断裂的能力都来自其正常的微观组织。此外,低循环周次试样虽然很快就断裂,但仍能观察到循环加载条带和条带中的二次裂纹,说明该试样的基体组织承受了外加载荷,发生严重的塑性变形。而高周次试样除了观察到循环加载条带,还在显微疏松处观察到基体中出现大量的PSBs,这符合fcc结构金属的滑移导致的变形和断裂特征。

图5

图5   循环周次与显微疏松体积分数的关系曲线

Fig.5   Relationship between fatigue cycle (Nf) and volume fraction of microporosity (fv)


图6

图6   低周次(394 cyc)和高周次(5457 cyc)试样断口形貌的SEM像

Fig.6   SEM images showing the fracture surfaces of low-cycle (394 cyc) (a~c) and high-cycle (5457 cyc) (d~f) specimens (PSBs—persistent slip bands)


2.3 断口附近纵截面微观组织形貌

加载后断口附近纵截面Laves相形貌的SEM像如图7a所示。Laves相的确定是参考了其EDS点扫描结果(图7c),如图7a中spot 1,该相富含Nb和Mo,再结合其与周围层片相(典型的δ-Ni3Nb相形貌)的共生关系,确定为Laves相。长条状的Laves相已经随着断口发生断裂,而残留在基体中的部分也出现二次裂纹(图7a中插图)。hcp结构的Laves相在常温下很难产生滑移变形,而当应变局部化程度加剧时,Laves相受应力集中的影响,产生开裂。当显微疏松存在时,Laves相并不是导致合金循环断裂的首要因素,但其在局部区域的存在破坏了γ-Ni基体的连续性,成为局部微小裂纹源。图7a表明,Laves相内部的二次裂纹并不是随机扩展,而是表现出一定程度的平行排列特征。断口中的Laves相也观察到这种特征,且伴随着基体PSBs的出现(图7b)。在这里将其定义为Laves相的层状开裂特征。Laves相的确定,同样是借助EDS点扫描结果(图7d),如图7b中spot 2。此外,Laves相与基体的结合位置也是较薄弱区,出现沿着相界面的断裂特征。

图7

图7   断口附近纵截面和断口中的Laves相循环加载断裂特征的SEM像和对应的EDS结果

Fig.7   SEM images of cyclic fractured Laves particle near the fracture surface in longitudinal section (a) and cyclic fractured Laves particle in fracture surface (b), and EDS results of the spot 1 in Fig.7a (c) and spot 2 in Fig.7b (d) (Inset in Fig.7a shows the secondary cracks)


断口附近δ-Ni3Nb相的演变和断裂特征如图8所示。δ-Ni3Nb相基本能维持其原本的长片状的形貌特征,但部分层片还是发生了明显的形貌变化。δ-Ni3Nb相的形貌演变主要分为2种类型:一是沿其长度方向发生断裂(图8a);二是在其层片表面出现类似滑移的变形或断裂特征(图8b)。当出现滑移变形或断裂时,δ-Ni3Nb层片还会出现偏离长度方向的弯曲特征。仔细观察后发现,沿长度方向的开裂,主要发生在与加载方向夹角较小的δ-Ni3Nb层片中。而垂直于加载方向的δ-Ni3Nb层片在外加循环应力的作用下优先以滑移的方式发生塑性变形,直至最终断裂。

图8

图8   δ-Ni3Nb层片循环加载变形和断裂特征的SEM像

Fig.8   SEM images of δ-Ni3Nb plates characterized by branch cracking and bending (a) and fractured δ-Ni3Nb plates induced by slip (b)


3 分析讨论

3.1 Laves相的循环变形演变机制

本工作在断口附近的纵剖面和断口形貌中均观察到Laves相的层状断裂特征,如图7所示。进一步通过EBSD分析了Laves颗粒的晶粒取向及其周围的应变局部化特征,如图9所示。图9b为Laves相的反极图(IPF)和三维晶粒取向示意图。可见,加载后单个Laves颗粒断裂成几个小部分,但是每个部分都具有几乎相同的晶粒取向(图9b中各部分的三维晶粒取向一致)。因此,Laves相的断裂并不是塑性变形累积的过程,而是具有明显的脆断特征[4,30]图9b中个别取向差异较大的位置(如图9b中绿色区域)可能是因为在加载中受到基体的挤压,导致这些断裂的小块Laves相发生晶粒偏转[31]。此外,这种取向特征说明Laves相的断裂并不是随机的,可能是沿某组平行晶面扩展。由于Laves相破坏了γ-Ni基体的连续性,在其周围基体中产生应力集中或塑性应变累积[21]。随着循环加载的进行,Laves相周围基体中的塑性应变累积程度不断增加,尤其是在尖锐位置累积非常严重的应力集中,最终导致Laves相断裂,且裂纹沿着特定晶面扩展[21,31,32]。为了进一步讨论Laves相的断裂与其周围基体应力集中的关系,利用EBSD数据提取相关区域的局部取向差角度(local misorientation angle,LMO angle)的分布,如图9c所示。LMO angle可以用来表征局部区域的位错塞积密度,进而表征应力集中水平,其值越大应力集中程度越大。可以看出,Laves相内部的裂纹扩展都是源于外部应力集中程度较大的位置。此外,Laves相尖端的应力集中还可能导致裂纹在其内部和基体中同时扩展。综合不同循环寿命试样观察结果,发现Laves相的断裂特征与循环加载次数没有明显对应关系,而只受到显微疏松的影响。即只要因为显微疏松而发生循环断裂,Laves相的断裂特征是一致的。hcp结构Laves相的塑性变形能力显著弱于fcc结构的γ-Ni基体,Laves相改变了基体原有的循环变形连续性和协调性,导致该相周围出现应力集中,产生应变局部化[21]。这一方面使Laves相自身发生开裂,另一方面使基体在局部大应力的作用下产生开裂或与Laves相分离。

图9

图9   循环加载断裂后Laves颗粒及其周围组织的EBSD分析

Color online

Fig.9   EBSD analyses of band contrast image of cyclic fractured Laves particle (a), inverse pole figure (IPF) image and 3D crystal orientation (insets) of the Laves particle (b) and local misorientation angle distribution within Ni-matrix nearby the Laves particle (c)


3.2 δ-Ni3Nb相的循环变形演变机制

K4169合金中的δ-Ni3Nb相普遍具有层片状的三维形貌,其长、宽、厚3个方向的尺寸差异较大,而且本身属于正交晶系结构,因此各向异性明显,这也是δ-Ni3Nb相在循环加载后会出现2种类型形貌演变的原因。图10展示了δ-Ni3Nb层片在不同方向上的变形特征,沿长度方向(以下用“平行方向”指代),δ-Ni3Nb层片表现为分叉断裂,而垂直于宽度方向和厚度方向组成的平面(以下用“垂直方向”指代),则表现为弯曲变形。进一步对比了不同循环寿命试样,发现平行方向的分叉断裂在较少的循环周次下已经出现,但没有发生弯曲,说明此时δ-Ni3Nb层片只发生沿长度方向的断裂,而没有在其表面产生滑移,如图10a所示。此外,在稍远离断口和显微疏松的区域,垂直方向的δ-Ni3Nb相出现因显微疏松体积分数不同而变化的变形特征,即当显微疏松体积分数较大时,循环周次较短,未断裂的δ-Ni3Nb相表面出现少量滑移迹线。随着显微疏松体积分数减少,循环周次增加,未断裂的δ-Ni3Nb相表面滑移迹线逐渐增多(图10b)。这说明δ-Ni3Nb层片的垂直方向比平行方向有更好的抵抗循环断裂的能力。由δ-Ni3Nb相与γ-Ni基体的取向关系可知,其长度方向为[100]δ方向,宽度方向和厚度方向组成的平面为(010)δ[1],该面是δ-Ni3Nb的密排面,同时也是易滑移面,滑移系为(010)δ[100]δ[33~36]。Hagihara等[37]在对Ni3Nb单晶的压缩变形研究中发现,Ni3Nb单晶在室温变形时出现[100]螺型位错,当温度超过一定值时(视压缩轴与单晶体取向而定),螺型位错逐渐向刃型位错转变。本工作通过对循环变形后的δ-Ni3Nb层片进行HRTEM分析,也发现刃型位错(图10d)。虽然本工作不涉及到高温,并且拉压循环加载与文献[37]中的单向压缩也存在区别,但不排除由于循环加载导致螺型位错向刃型位错转变。

图10

图10   δ-Ni3Nb相变形和断裂机制的SEM和TEM分析

(a) SEM image of branch-fractured δ-Ni3Nb phase

(b) SEM image of slip lines presenting on δ-Ni3Nb surface of the specimen with average 5457 cyc

(c) bright-field TEM image of branch-fractured δ-Ni3Nb

(d) HRTEM image, local fast Fourier transform (FFT) and inverse FFT images (insets) of δ-Ni3Nb phase after fatigue

Fig.10   Deformation and fracture analyses of δ-Ni3Nb phase by SEM and TEM


3.3 γ-Ni基体循环变形特征及其与析出相的相互作用

图9c可知,在Laves相周围的γ-Ni基体中存在明显的基体取向偏差。由于δ-Ni3Nb相与Laves相共生(图9a),所以γ-Ni基体中的取向偏差也存在于δ-Ni3Nb相周围(图9a和c)。由此可以推断出δ-Ni3Nb层片受到γ-Ni基体应变局部化的影响。与Laves相不同的是δ-Ni3Nb相的塑性变形能力更好,因此即使Laves相在疲劳早期发生断裂,部分δ-Ni3Nb相却还能维持其原本的层片状形貌,直至弯曲和滑移开裂[21]。本工作通过截取δ-Ni3Nb层片周围的基体组织进行TEM和TKD观察,都发现该区域有明显的孪生变形痕迹,如图11所示。γ-Ni基体作为典型的fcc结构,当循环加载应力幅低于屈服强度时,应变局部化倾向于首先在Σ3孪晶界附近出现,所以在孪晶附近观察到明显的结构变化特征[4]。又由于δ-Ni3Nb相与γ-Ni基体具有明显的位相关系,基体中的应变局部化会导致δ-Ni3Nb相产生变形,所以在δ-Ni3Nb层片周围观察到明显的应变局部化效应[4]

图11

图11   循环加载后γ-Ni基体中孪生变形特征的TEM像和TKD像

Color online

Fig.11   TEM image (a) and TKD band contrast image (inset shows Kikuchi pattern of γ-Ni matrix) (b) showing twin related deformation characteristic of γ-Ni matrix after cyclic loading


4 结论

(1) K4169合金表面处的显微疏松是循环加载时裂纹萌生的最敏感区域,且循环寿命受显微疏松体积分数的影响最为显著,随显微疏松体积分数的增加减小。

(2) 尺寸较小的颗粒状的Laves脆性相不是循环加载裂纹萌生的主要因素,而且其断裂行为不受到循环加载周次的影响,循环加载初期就因为应变局部化而出现沿平行晶面的层状断裂特征,并且也产生γ/Laves相界面的断裂。

(3) 受循环加载周次和相对排列方向的影响,δ-Ni3Nb层片具有2种形貌演变方式。非垂直于加载方向的层片在较少循环周次时就会出现沿长度方向的分叉断裂;垂直于加载方向的层片表现为塑性滑移。随着循环周次的增加,远离显微疏松或断口区域的δ-Ni3Nb层片表面会依次出现滑移迹线增多直至断裂的形貌演变特征。

(4) 在低于屈服强度的循环应力幅作用下,γ-Ni基体应变局部化产生于孪晶附近,而这类应变局部化是导致Laves相和δ-Ni3Nb层片在循环加载中变形或断裂的主要原因。

参考文献

Mahadevan S, Nalawade S, Singh J B, et al.

Evolution of δ phase microstructure in alloy 718 [A]. 7th International Symposium on Superalloy 718 and Derivatives

[C]. Pittsburgh: The Minerals, Metals & Materials Society, 2010: 737

[本文引用: 2]

Niang A, Viguier B, Lacaze J.

Some features of anisothermal solid-state transformations in alloy 718

[J]. Mater. Charact., 2010, 61: 525

Texier D, Gómez A C, Pierret S, et al.

Microstructural features controlling the variability in low-cycle fatigue properties of alloy Inconel 718DA at intermediate temperature

[J]. Metall. Mater. Trans., 2016, 47A: 1096

[本文引用: 3]

Liu J H, Vanderesse N, Stinville J C, et al.

In-plane and out-of-plane deformation at the sub-grain scale in polycrystalline materials assessed by confocal microscopy

[J]. Acta Mater., 2019, 169: 260

DOI      URL     [本文引用: 7]

Xie X S, Dong J X, Fu S H, et al.

Research and development of γ′′ and γ′ strengthened Ni-Fe base superalloy GH4169

[J]. Acta Metall. Sin., 2010, 46: 1289

DOI      URL     [本文引用: 1]

γ´´ and γ´ strengthened Ni-Fe base superalloy Inconel 718 (GH4169) is world-widely used under 650 ℃ because of its excellent mechanical properties and metallurgical workability. The effects of main strengthening elements Nb, Ti, Al, minor elements P, S and micro-alloying element Mg on mechanical properties and structure stability have been studied for this alloy at standard heat treatment and long time aging conditions both by means of mechanical tests (tensile, stress rupture and creep, cyclic stress rupture and crack propagation etc.) and detail structure analyses (SEM, TEM, EDS, SAED, phase separation and micro-chemical analyses etc.) and also Auger analyses on grain boundary segregation behavior. For quality improvement of conventional GH4169, Nb content should be controlled at high level (5.4%-5.5%) with low content of S (<10×10-6) and high level of P (but less than 150×10-6) and with micro-alloying element Mg also. For 680 ℃ even higher temperature used modified GH4169 the γ´´/γ´ highest stable temperature must be raised and the grain boundary precipitates should be controlled. Nb content should be still controlled at high level (5.4%-5.5%), Al content should be raised to 1.0%-1.5% and Ti content still be kept at 1%; S must be controlled to less than 10×10-6 and P should be raised to a high level but less than 150×10-6 and also with micro-alloying element Mg. The modified GH4169 to be used at 680 ℃ or even higher temperature has good thermal structure stability and high mechanical properties above 650 ℃.]]>

(谢锡善, 董建新, 付书红.

γ′′和γ′相强化的Ni-Fe基高温合金GH4169的研究与发展

[J]. 金属学报, 2010, 46: 1289)

DOI      URL     [本文引用: 1]

γ´´和γ´相强化的Ni-Fe基高温合金Inconel 718(GH4169)由于其优异的力学和工艺性能, 在650 ℃以下的高温环境中得到了广泛的应用. 本文采用热力学计算以及合金设计理论与大量的力学性能相结合, 不仅在常规热处理并且在高温长期时效状态下来研究主要强化元素Nb, Ti, Al和杂质元素P, S以及微合金化元素Mg的作用. 采用金相, SEM, TEM, EDS, SAED以及电解萃取和相化学分析等综合分析方法, 对各类析出相γ´´, γ´, δ, δ´´, σ和α-Cr进行定性的分析, 同时亦采用Auger能谱仪分析晶界元素的偏聚行为. 研究结果表明, 为提高GH4169原型合金的性能, 主要强化元素 Nb应控制在高限(5.4%-5.5%), 降低S到10×10-6以下, 提高P至150×10-6以下, 并添加适量的Mg. 为提高GH4169合金的使用温度到680 ℃甚至更高, 必须通过合金化的途径来提高主要强化相 γ´´/γ´的最高稳定温度和控制晶界析出相. 为此, 680 ℃或更高一点温度使用的改进型 GH4169合金中Nb仍应控制在高限(5.4%-5.5%), S控制到10×10-6以下, P提高到150×10-6, 配合适量的Mg微合金化, 同时要提高Al含量至1.0%-1.5%, Ti含量不变仍控制在1%左右, 改进型GH4169合金不仅在650 ℃以上显示出优良的高温组织稳定性, 并且亦提高了高温力学性能.]]>

Paulonis D F, Schirra J J.

Alloy 718 at Pratt & Whitney-Historical perspective and future challenges [A]. 5th International Symposium on Superalloys 718, 625, 706, and Derivatives

[C]. Pittsburgh: The Minerals, Metals & Materials Society, 2001: 13

[本文引用: 1]

Schafrik R E, Ward D D, Groh J R.

Application of alloy 718 in GE aircraft engines: Past, present and next five years [A]. 5th International Symposium on Superalloys 718, 625, 706, and Derivatives

[C]. Pittsburgh: The Minerals, Metals & Materials Society, 2001: 1

Trosch T, Strößner J, Völkl R, et al.

Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting

[J]. Mater. Lett., 2016, 164: 428

[本文引用: 1]

Praveen K V U, Singh V.

Effect of heat treatment on Coffin-Manson relationship in LCF of superalloy IN718

[J]. Mater. Sci. Eng., 2008, A485: 352

[本文引用: 1]

Xu J H, Huang Z W, Jiang L.

Effect of heat treatment on low cycle fatigue of IN718 superalloy at the elevated temperatures

[J]. Mater. Sci. Eng., 2017, A690: 137

[本文引用: 4]

Slama C, Abdellaoui M.

Structural characterization of the aged Inconel 718

[J]. J. Alloys Compd., 2000, 306: 277

DOI      URL     [本文引用: 1]

Rao G A, Kumar M, Srinivas M, et al.

Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718

[J]. Mater. Sci. Eng., 2003, A355: 114

Jeong D H, Choi M J, Goto M, et al.

Effect of service exposure on fatigue crack propagation of Inconel 718 turbine disc material at elevated temperatures

[J]. Mater. Charact., 2014, 95: 232

[本文引用: 1]

Yeratapally S R, Glavicic M G, Hardy M, et al.

Microstructure based fatigue life prediction framework for polycrystalline nickel-base superalloys with emphasis on the role played by twin boundaries in crack initiation

[J]. Acta Mater., 2016, 107: 152

[本文引用: 2]

Krueger D D, Antolovich S D, van Stone R H.

Effects of grain size and precipitate size on the fatigue crack growth behavior of alloy 718 at 427 ℃

[J]. Metall. Trans., 1987, 18A: 1431

[本文引用: 1]

Xiao L, Chen D L, Chaturvedi M C.

Effect of boron on fatigue crack growth behavior in superalloy IN 718 at RT and 650 ℃

[J]. Mater. Sci. Eng., 2006, A428: 1

[本文引用: 1]

Niang A, Huez J, Lacaze J, et al.

Characterizing precipitation defects in nickel based 718 alloy

[J]. Mater. Sci. Forum, 2010, 636-637: 517

[本文引用: 3]

Dehmas M, Lacaze J, Niang A, et al.

TEM study of high-temperature precipitation of delta phase in Inconel 718 alloy

[J]. Adv. Mater. Sci. Eng., 2011, 2011: 940634

[本文引用: 2]

Jiang H, Dong J X, Zhang M C, et al.

Stress relaxation mechanism for typical nickel-based superalloys under service condition

[J]. Acta Metall. Sin., 2019, 55: 1211

[本文引用: 1]

(江 河, 董建新, 张麦仓.

服役条件下镍基高温合金应力松弛微观机制

[J]. 金属学报, 2019, 55: 1211)

[本文引用: 1]

Liu Y H, Kang M D, Wu Y, et al.

Effects of microporosity and precipitates on the cracking behavior in polycrystalline superalloy Inconel 718

[J]. Mater. Charact., 2017, 132: 175

[本文引用: 1]

Sui S, Chen J, Fan E X, et al.

The influence of Laves phases on the high-cycle fatigue behavior of laser additive manufactured Inconel 718

[J]. Mater. Sci. Eng., 2017, A695: 6

[本文引用: 5]

Cao G X, Zhang M C, Dong J X, et al.

Effects of Nb content variations on precipitates evolution of GH4169 ingots during their solidification and homogenization processes

[J]. Rare Met. Mater. Eng., 2014, 43: 103

[本文引用: 1]

(曹国鑫, 张麦仓, 董建新.

Nb含量对GH4169合金钢锭凝固及均匀化过程相演化规律的影响

[J]. 稀有金属材料与工程, 2014, 43: 103)

[本文引用: 1]

Pattnaik S, Karunakar D B, Jha P K.

Developments in investment casting process—A review

[J]. J. Mater. Process. Technol., 2012, 212: 2332

[本文引用: 1]

Sigl K M, Hardin R A, Stephens R I, et al.

Fatigue of 8630 cast steel in the presence of porosity

[J]. Int. J. Cast Met. Res., 2004, 17: 130

[本文引用: 2]

Overfelt R A, Sahai V, Ko Y K, et al.

Porosity in cast equiaxed alloy 718 [A]. Superalloys 718, 625, 706, and Various Derivatives

[C]. Warrendale: The Minerals, Metals & Materials Society, 1994: 189

Flemings M C.

Solidification Processing

[M]. Weinheim: Wiley, 2006: 19

[本文引用: 2]

Wu Y, Li S M, Kang M D, et al.

Slip and fracture behavior of δ-Ni3Nb plates in a polycrystalline nickel-based superalloy during fatigue

[J]. Scr. Mater., 2019, 171: 36

[本文引用: 1]

Hidalgo R, Esnaola J A, Llavori I, et al.

Fatigue life estimation of cast aluminium alloys considering the effect of porosity on initiation and propagation phases

[J]. Int. J. Fatigue, 2019, 125: 468

[本文引用: 1]

Lamm M, Singer R F.

The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483

[J]. Metall. Mater. Trans., 2007, 38A: 1177

[本文引用: 1]

Boehlert C J, Li H, Wang L, et al.

Slip system characterization of Inconel 718: Using in-situ scanning electron microscopy

[J]. Adv. Mater. Process., 2010, 168(11): 41

[本文引用: 1]

Sui S, Chen J, Ming X L, et al.

The failure mechanism of 50% laser additive manufactured Inconel 718 and the deformation behavior of Laves phases during a tensile process

[J]. Int. J. Adv. Manuf. Technol., 2017, 91: 2733

DOI      URL     [本文引用: 2]

Liu Y H, Wu Y, Kang M D, et al.

Fracture mechanisms induced by microporosity and precipitates in isothermal fatigue of polycrystalline nickel based superalloy

[J]. Mater. Sci. Eng., 2018, A736: 438

[本文引用: 1]

Umakoshi Y, Hagihara K, Nakano T.

Operative slip systems and anomalous strengthening in Ni3Nb single crystals with the D0astructure

[J]. Intermetallics, 2001, 9: 955

[本文引用: 1]

Kelly P M, Ren H P, Qiu D, et al.

Identifying close-packed planes in complex crystal structures

[J]. Acta Mater., 2010, 58: 3091

Zhang H Y, Zhang S H, Cheng M, et al.

Deformation characteristics of δ phase in the delta-processed Inconel 718 alloy

[J]. Mater. Charact., 2010, 61: 49

Sugimura H, Kaneno Y, Takasugi T.

Alloying behavior of Ni3M-type compounds with D0a structure

[J]. Mater. Trans., 2011, 52: 663

[本文引用: 1]

Hagihara K, Nakano T, Umakoshi Y.

Plastic deformation behaviour and operative slip systems in Ni3Nb single crystals

[J]. Acta Mater., 2000, 48: 1469

[本文引用: 2]

/