Please wait a minute...
金属学报  2020, Vol. 56 Issue (5): 673-682    DOI: 10.11900/0412.1961.2019.00267
  本期目录 | 过刊浏览 |
冷变形和固溶温度对HR3C钢中σ相析出行为的影响
曹铁山1,2, 赵津艺1, 程从前1, 孟宪明3, 赵杰1()
1.大连理工大学材料科学与工程学院 大连 116024
2.大连理工大学工业装备结构分析国家重点实验室 大连 116024
3.中国汽车技术研究中心 天津 300300
Effect of Cold Deformation and Solid Solution Temperature on σ-phase Precipitation Behavior in HR3C Heat Resistant Steel
CAO Tieshan1,2, ZHAO Jinyi1, CHENG Congqian1, MENG Xianming3, ZHAO Jie1()
1.School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2.State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
3.China Automotive Technology & Research Center, Tianjin 300300, China
引用本文:

曹铁山, 赵津艺, 程从前, 孟宪明, 赵杰. 冷变形和固溶温度对HR3C钢中σ相析出行为的影响[J]. 金属学报, 2020, 56(5): 673-682.
Tieshan CAO, Jinyi ZHAO, Congqian CHENG, Xianming MENG, Jie ZHAO. Effect of Cold Deformation and Solid Solution Temperature on σ-phase Precipitation Behavior in HR3C Heat Resistant Steel[J]. Acta Metall Sin, 2020, 56(5): 673-682.

全文: PDF(3791 KB)   HTML
摘要: 

结合HR3C钢制备工艺,综合研究冷变形和固溶处理工艺对其在时效过程中σ相的析出动力学和相关力学性能的影响。结果表明:冷变形和固溶温度均对该钢中σ相的析出有着较大的影响,变形量的增加会促进σ相的时效析出,升高固溶处理温度有助于抑制HR3C钢中σ相的析出行为,但却在一定程度上增大晶粒尺寸。σ相析出量随时间延长先缓慢增加,后快速析出,最后达到稳态值约5.7% (体积分数)。变形量的增加使HR3C钢时效过程中冲击韧性显著降低,而固溶温度的升高虽然增加了固溶态试样的冲击韧性但降低了时效过程中的冲击韧性。

关键词 HR3C钢σ冷变形固溶处理    
Abstract

HR3C steel, widely applied in ultra-supercritical power plant, suffers an intergranular embrittlement problem during long-term high-temperature ageing or service, which will be enhanced by the precipitation of σ phase. Research has showed that the precipitation behaviors of σ phase are different significantly as the difference of manufacturers, which relates to the preparation process of cold-deformation & solid-solution treatment. In this work, the effects of cold deformation and solution treatment on the precipitation kinetics of σ phase and related mechanical properties for HR3C steel during the ageing process were studied. The results show that cold-deformation and solid solution temperature both have a significant influence on the precipitation of σ phase in the steel. The increase of cold-deformation will promote the precipitation of σ phase, and rising solution temperature helps to inhibit the growth of σ phase but increase the grain size. The precipitation kinetics study of σ phase in HR3C steel with different pre-treatment shows that σ phase growths slowly at first, and then gets into a rapid precipitation period, and finally reaches a steady-state with a value of about 5.7% (volume fraction). The impact toughness analysis shows that the increase of cold-deformation would lower down the impact toughness of HR3C steel during the ageing procedure, while the rise of the solid-solution temperature increases the impact toughness before ageing and reduces it during ageing.

Key wordsHR3C steel    σ phase    cold-deformation    solid solution treatment
收稿日期: 2019-08-15     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(U1610256);国家高技术研究发展计划项目(2015AA034402);大连理工大学基本科研业务费项目(No.DUT19RC(4)010)
作者简介: 曹铁山,男,1985年生,博士
图1  不同状态下的HR3C试样显微组织的OM像
图2  冷变形8%的HR3C钢在不同温度固溶处理后的显微组织的OM像
图3  不同冷变形+1093 ℃、20 min固溶处理HR3C钢在750 ℃时效不同时间后显微组织的OM像
图4  冷变形8%的HR3C钢经不同固溶温度处理后750 ℃长时间时效显微组织的OM像
图5  8%冷变形+1093 ℃、20 min固溶+750 ℃、2000 h时效HR3C钢的SEM像及点1中第二相的EDS分析
图6  不同冷变形HR3C钢经1093 ℃、20 min固溶后在750 ℃时效过程中的显色实验结果
图7  不同冷变形的HR3C钢在750 ℃时效时σ相体积分数随时间的变化关系
图8  不同处理状态的HR3C钢的lnln11-y-lnt关系及σ相析出的Avrami曲线
Deformation stateSolution temperatureAgeing temperaturebn
As received10937509.654×10-71.787
50%10937003.860×10-82.598
50%10937506.808×10-72.313
8%10937002.024×10-215.816
8%10937501.129×10-92.600
8%11437501.557×10-195.369
表1  由lnln11-y-lnt线性关系得到的Avrami方程中参数b和n
图9  700和750 ℃时效条件下HR3C钢中σ相析出的TTT曲线
图10  冷变形和固溶温度对HR3C钢在700 ℃时效过程中的Charpy冲击吸收功的影响
图11  HR3C钢经8%冷变形+1093 ℃固溶处理后在700 ℃时效不同时间样品的微观断口形貌
1 Yang F, Zhang Y L, Ren Y N, et al. New Heat-Resistant Steels Welding [M]. Beijing: China Electric Power Press, 2006: 143
1 杨 富, 章应霖, 任永宁等. 新型耐热钢焊接 [M]. 北京: 中国电力出版社, 2006: 143
2 Shirzadi A, Jackson S. Structural Alloys for Power Plants: Operational Challenges and High-Temperature Materials [M]. Cambridge: Woodhead Publishing, 2014: 105
3 Sawaragi Y, Teranishi H, Makiura H, et al. The development of austenite heat resistant steel for boiler tubes [J]. Sumitomo Met., 1985, 37: 166
4 Zhou R C, Fan C X. Review of material research and material selection for ultra-supercritical power plants [J]. Electr. Pow., 2005, 38(8): 41
4 周荣灿, 范长信. 超超临界火电机组材料研究及选材分析 [J]. 中国电力, 2005, 38(8): 41
5 Tang L P. Development of ultra supercritical boiler steel [J]. Appl. Energy Technol., 2007, (10): 20
5 唐利萍. 超超临界锅炉用钢的发展 [J]. 应用能源技术, 2007, (10): 20
6 Wang Z W, Tian J, Fan D L, et al. Microstructure and properties of HR3C steel after service for 50000 h [J]. Heat Treat. Met., 2017, 42(12): 1
6 王志武, 田 竞, 范德良等. HR3C钢服役50000h后的组织与性能 [J]. 金属热处理, 2017, 42(12): 1
7 Luo K J, Zhao Y F, Zhang L, et al. Embrittlement mechanism of austenitic heat resistant steel HR3C for ultra supercritical boiler [J]. Trans. Mater. Heat Treat., 2017, 38(7): 79
7 罗坤杰, 赵彦芬, 张 路等. 超超临界锅炉用奥氏体耐热钢HR3C的脆化机理 [J]. 材料热处理学报, 2017, 38(7): 79
8 Fang Y Y, Zhao J, Li X N. Precipitates in HR3C steel aged at high temperature [J]. Acta Metall. Sin., 2010, 46: 844
8 方园园, 赵 杰, 李晓娜. HR3C钢高温时效过程中的析出相 [J]. 金属学报, 2010, 46: 844
9 Xu H. The analysis of microstructure evolution of HR3C heat resistant steel during high temperature creep test [D]. Taiyuan: Taiyuan University of Technology, 2015
9 许 航. HR3C耐热钢在高温蠕变过程中微观组织演变分析 [D]. 太原: 太原理工大学, 2015
10 Wang H. Study on precipitation kinetics of σ phase in HR3C austenitic stainless steel [D]. Dalian: Dalian University of Technology, 2016
10 王 慧. HR3C钢中σ相析出动力学研究 [D]. 大连: 大连理工大学, 2016
11 Zhao J Y. Effect of cold deformation and solution treatment on the precipitation of σ phase in HR3C steel [D]. Dalian: Dalian University of Technology, 2019
11 赵津艺. 冷变形/固溶处理对HR3C钢中σ相析出的影响 [D]. 大连: 大连理工大学, 2019
12 Cao T S, Cheng C Q, Zhao J, et al. Precipitation behavior of σ phase in ultra‑supercritical boiler applied HR3C heat‑resistant steel [J]. Acta Metall. Sin.-(Eng. Lett., 2019, 32: 1355
13 ASTME 407-2007. Standard Practice for Microetching Metals and Alloys [S]. ASTM, 2007
14 Xing J, Wei Y H, Hou L F, et al. Rule for niobium precipitation during aging treatment and its influence on properties of stainless steel HR3C [J]. J. Iron Steel Res., 2014, 26(12): 54
14 邢 佳, 卫英慧, 侯利锋等. HR3C不锈钢时效过程中铌的析出规律及其对性能的影响 [J]. 钢铁研究学报, 2014, 26(12): 54
15 Wang H, Cheng C Q, Zhao J, et al. Study on σ phase precipitation of HR3C steel used in ultra-supercritical boiler [J]. Acta Metall. Sin., 2015, 51: 920
15 王 慧, 程从前, 赵 杰等. 超超临界锅炉用HR3C钢的σ相析出行为研究 [J]. 金属学报, 2015, 51: 920
16 Joubert J M. Crystal chemistry and Calphad modeling of the σ phase [J]. Prog. Mater. Sci., 2008, 53: 528
doi: 10.1016/j.jmbbm.2016.04.040 pmid: 27235781
17 Bina M H. Study on formation and morphology of sigma-phase in continuous annealing furnace roller [J]. Eng. Fail. Anal., 2013, 34: 174
18 Liu P H, Zhang E G, Guan K S, et al. Researches on the transformation thermodynamics and transformation kinetics of the carbide and σ-phase in Cr-Ni austenite stainless refractory steel [J]. Chem. Eng. Mach., 2002, 29(2): 82
18 刘鹏虎, 张而耕, 关凯书等. Cr-Ni奥氏体不锈耐热钢中碳化物、σ相变热力学和转变动力学探讨 [J]. 化工机械, 2002, 29(2): 82
19 Badji R, Kherrouba N, Mehdi B, et al. Precipitation kinetics and mechanical behavior in a solution treated and aged dual phase stainless steel [J]. Mater. Chem. Phys., 2014, 148: 664
doi: 10.1016/j.matchemphys.2014.08.032
20 Berecz T, ÉFazakas, Mészáros I, et al. Decomposition kinetics of ferrite in isothermally aged SAF 2507-type duplex stainless steel [J]. J. Mater. Eng. Perform., 2015, 24: 4777
doi: 10.1007/s11665-015-1793-6
21 Hou R X. Studies on precipitation kinetics of TP304H austenitic stainless steel [D]. Lanzhou: Lanzhou University of Technology, 2013
21 侯瑞雪. TP304H奥氏体不锈钢析出动力学研究 [D]. 兰州: 兰州理工大学, 2013
22 Lo K H, Shek C H, Lai J K L. Recent developments in stainless steels [J]. Mater. Sci. Eng., 2009, R65: 39
23 Vitek J M, David S A. The sigma phase transformation in austenitic stainless steels [J]. Weld J., 1986, 65: 106-S
24 Tang B, Zhu L H, Wang Q J. Precipitation behavior of σ phase in S30432 Steel during creep rupture test at 700 ℃ and the effect on material property [J]. J. Chin. Soc. Power Eng., 2014, 34: 827
24 唐 波, 朱丽慧, 王起江, S30432钢700 ℃持久σ相的析出及其对性能的影响 [J]. 动力工程学报, 2014, 34: 827
25 Sourmail T, Bhadeshia H K D H. Microstructural evolution in two variants of NF709 at 1023 and 1073 K [J]. Metall. Mater. Trans., 2005, 36A: 23
26 Sahlaoui H, Sidhom H. Experimental investigation and analytical prediction of σ-phase precipitation in AISI 316l austenitic stainless steel [J]. Metall. Mater. Trans., 2013, 44A: 3077
[1] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[2] 魏琳,王志军,吴庆峰,尚旭亮,李俊杰,王锦程. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7): 840-848.
[3] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[4] 李彦默, 刘晨曦, 余黎明, 李会军, 王祖敏, 刘永长, 李文亚. 高温时效对S31042钢线性摩擦焊接头组织和力学性能的影响[J]. 金属学报, 2018, 54(7): 981-990.
[5] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[6] 胡国栋, 王培, 李殿中, 李依依. 新型25Cr-20Ni奥氏体耐热不锈钢750 ℃持久实验过程中析出相演变[J]. 金属学报, 2018, 54(11): 1705-1714.
[7] 丁雨田,高钰璧,豆正义,高鑫,刘德学,贾智. 形变诱导GH3625合金热挤压管材δ相的析出行为[J]. 金属学报, 2017, 53(6): 695-702.
[8] 张洪伟,秦学智,李小武,周兰章. 一种高硼定向凝固合金的初熔行为及其对力学性能的影响[J]. 金属学报, 2017, 53(6): 684-694.
[9] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[10] 何波,聂庆武,张洪宇,韦华. 固溶处理对CoCrW合金组织及耐磨性能的影响*[J]. 金属学报, 2016, 52(4): 484-490.
[11] 游晓红,王刚刚,王军,许涛,张洪宇,韦华. 固溶处理对热压CoCrW合金组织及力学性能的影响*[J]. 金属学报, 2016, 52(2): 161-167.
[12] 陈雨来,罗照银,李静媛. 固溶温度对S32760双相不锈钢组织与耐点蚀性能的影响[J]. 金属学报, 2015, 51(9): 1085-1091.
[13] 王慧,程从前,赵杰,杨鸷. 超超临界锅炉用HR3C钢的σ 相析出行为研究*[J]. 金属学报, 2015, 51(8): 920-924.
[14] 付勇军, 杨平, 蒋奇武, 王晓达, 金文旭. Fe-3%Si电工钢铸坯柱状晶织构的演变规律*[J]. 金属学报, 2015, 51(5): 545-552.
[15] 彭志方,任文,杨超,陈方玉,刘鸿国,彭芳芳,梅青松. HR3C钢运行过热器管的脆化与晶界M23C6相参量演化的关系*[J]. 金属学报, 2015, 51(11): 1325-1332.