Please wait a minute...
金属学报  2020, Vol. 56 Issue (3): 374-384    DOI: 10.11900/0412.1961.2019.00198
  研究论文 本期目录 | 过刊浏览 |
钛合金薄壁件选区激光熔化应力演变的数值模拟
柯林达1,殷杰2(),朱海红2,彭刚勇2,孙京丽1,陈昌棚2,王国庆3,李中权1,曾晓雁2
1. 上海航天精密机械研究所上海金属材料近净成形工程技术研究中心 上海 201600
2. 华中科技大学武汉光电国家研究中心 武汉 430074
3. 中国运载火箭技术研究院 北京 100076
Numerical Simulation of Stress Evolution of Thin-Wall Titanium Parts Fabricated by Selective Laser Melting
KE Linda1,YIN Jie2(),ZHU Haihong2,PENG Gangyong2,SUN Jingli1,CHEN Changpeng2,WANG Guoqing3,LI Zhongquan1,ZENG Xiaoyan2
1. Shanghai Engineering Technology Research Center of Near-Net-Shape Forming for Metallic Materials, Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China
2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
3. China Academy of Launch Vehicle Technology, Beijing 100076, China
全文: PDF(9051 KB)   HTML
摘要: 

建立了选区激光熔化(SLM)热-结构耦合瞬时动态有限元模型,探究了激光扫描速率和铺粉层厚度对SLM成形钛合金薄壁件应力演变的影响。结果表明,在热循环作用下,SLM成形钛合金薄壁件的应力演变呈周期性变化。在热应力循环去应力退火作用下,热应力极大值在加热阶段先增加后减小,最后在冷却阶段趋于稳定并接近残余应力。SLM成形薄壁件最终残余应力小于加热过程中的瞬时应力峰值。随沉积高度的增加,热循环作用减弱,应力极大值下降幅度逐渐减小。经过多次热循环去应力退火作用后,SLM成形薄壁件过程中的热应力极大值下降幅度可达30%以上。

关键词 钛合金薄壁件应力演变选区激光熔化增材制造    
Abstract

Selective laser melting (SLM) is a very promising additive manufacturing (AM) technology for fabrication of thin-walled parts due to its high forming accuracy with complex shape. The higher temperature gradient in rapid heating and cooling process is prone to produce larger thermal stress, which will induce warpage deformation of SLMed parts. However, most of the current SLM stress studies focus on the residual stress, and only a few reports on the transient stress in the thermal cycle during SLM. In this work, a thermal-mechanical coupled transient dynamic finite element model was established to study the effects of laser scan rate and layer thickness on stress evolution during SLM processing. The results show that under the action of thermal cycle, the internal stress evolution in SLM of titanium alloy thin-walled parts presents a thermal stress cycle. Under the relief annealing of the thermal stress cycle, the peak thermal stress increases first and then decreases in the heating stage, and stabilizes and approaches the value of residual stress in the cooling stage. The residual stress of SLMed thin-walled parts is less than the transient peak stress during heating. After several thermal cycles with stress relief annealing effect, the peak thermal stress of SLM thin-walled parts can be reduced by more than 30%.

Key wordstitanium alloy    thin-wall parts    stress evolution    selective laser melting    additive manufacturing
收稿日期: 2019-06-19     
ZTFLH:  TN249  
基金资助:国家自然科学基金项目(61805095);国家自然科学基金项目(51701116);上海市“科技创新行动计划”基础研究重点科技项目(17JC1402600);上海航天科技创新基金项目(SAST2017-58);上海市青年科技英才扬帆计划项目(16YF1405000)
通讯作者: 殷杰     E-mail: yinjie@hust.edu.cn
Corresponding author: Jie YIN     E-mail: yinjie@hust.edu.cn
作者简介: 柯林达,男,1986年生,高级工程师,博士

引用本文:

柯林达,殷杰,朱海红,彭刚勇,孙京丽,陈昌棚,王国庆,李中权,曾晓雁. 钛合金薄壁件选区激光熔化应力演变的数值模拟[J]. 金属学报, 2020, 56(3): 374-384.
Linda KE, Jie YIN, Haihong ZHU, Gangyong PENG, Jingli SUN, Changpeng CHEN, Guoqing WANG, Zhongquan LI, Xiaoyan ZENG. Numerical Simulation of Stress Evolution of Thin-Wall Titanium Parts Fabricated by Selective Laser Melting. Acta Metall Sin, 2020, 56(3): 374-384.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00198      或      https://www.ams.org.cn/CN/Y2020/V56/I3/374

图1  Ti-6Al-4V合金热导率和体积焓随温度的变化规律
图2  Ti-6Al-4V合金弹性模量和屈服强度随温度的变化规律
图3  选区激光熔化(SLM)成形Ti-6Al-4V合金薄壁件在不同激光扫描速率下的温度分布和熔池演变
图4  不同激光扫描速率下熔池尺寸的数值模拟与实验结果对比
图5  SLM成形Ti-6Al-4V合金薄壁件晶粒生长方向的数值模拟与实验结果对比
图6  SLM成形薄壁件残余应力的数值模拟与实验结果对比
图7  激光扫描速率对SLM成形钛合金薄壁件应力的影响
图8  SLM成形钛合金薄壁件第1层上表面节点D1示意图及不同铺粉层厚度条件下的热应力循环与热循环
图9  热循环去应力退火作用下不同铺粉厚度时冷却阶段节点D1的热应力下降幅度和比例
图10  热循环去应力退火作用下不同铺粉厚度时加热阶段节点D1热应力下降幅度及比例
[1] Lin X, Huang W D. High performance metal additive manufacturing technology applied in aviation field [J]. Mater. China, 2015, 34: 684
[1] 林 鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术 [J]. 中国材料进展, 2015, 34: 684
[2] Dong P, Chen J L. Current status of selective laser melting for aerospace applications abroad [J]. Aerosp. Manuf. Technol., 2014, (1): 1
[2] 董 鹏, 陈济轮. 国外选区激光熔化成形技术在航空航天领域应用现状 [J]. 航天制造技术, 2014, (1): 1
[3] Lu B H, Li D C. Development of the additive manufacturing (3D printing) technology [J]. Mach. Build. Autom., 2013, 42(4): 1
[3] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展 [J]. 机造械制与自动化, 2013, 42(4): 1
[4] Liang J J, Yang Y H, Jin T, et al. Research status of 3D printing technology for metals in space [J]. Manned Spaceflight, 2017, 23: 663
[4] 梁静静, 杨彦红, 金 涛等. 金属材料空间3D打印技术研究现状 [J]. 载人航天, 2017, 23: 663
[5] Zhao Z G, Bo L, Li L, et al. Status and progress of selective laser melting forming technology [J]. Aeronaut. Manuf. Technol., 2014, (19): 46
[5] 赵志国, 柏 林, 李 黎等. 激光选区熔化成形技术的发展现状及研究进展 [J]. 航空制造技术, 2014, (19): 46
[6] Nie X J, Zhang H, Zhu H H, et al. Analysis of processing parameters and characteristics of selective laser melted high strength Al-Cu-Mg alloys: From single tracks to cubic samples [J]. J. Mater. Process. Technol., 2018, 256: 69
[7] Huang W P, Yu H C, Yin J, et al. Microstructure and mechanical properties of K4202 cast nickel base superalloy fabricated by selective laser melting [J]. Acta Metall. Sin., 2016, 52: 1089
[7] 黄文普, 喻寒琛, 殷 杰等. 激光选区熔化成形K4202镍基铸造高温合金的组织和性能 [J]. 金属学报, 2016, 52: 1089
[8] Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690
[8] 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690
[9] Mercelis P, Kruth J P. Residual stresses in selective laser sintering and selective laser melting [J]. Rapid Prototyping J., 2006, 12: 254
[10] Liu Y, Yang Y Q, Wang D. A study on the residual stress during selective laser melting (SLM) of metallic powder [J]. Int. J. Adv. Manuf. Technol., 2016, 87: 647
[11] Liu Y, Pang Z C, Zhang J. Comparative study on the influence of subsequent thermal cycling on microstructure and mechanical properties of selective laser melted 316L stainless steel [J]. Appl. Phys., 2017, 123A: 688
[12] Gu D D, He B B. Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti-Ni shape memory alloy [J]. Comput. Mater. Sci., 2016, 117: 221
[13] Wen S, Dong A P, Lu Y L, et al. Finite element simulation of the temperature field and residual stress in GH536 superalloy treated by selective laser melting [J]. Acta Metall. Sin., 2018, 54: 393
[13] 文 舒, 董安平, 陆燕玲等. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟 [J]. 金属学报, 2018, 54: 393
[14] Chen D N, Liu T T, Liao W H, et al. Temperature field during selective laser melting of metal powder under different scanning strategies [J]. Chin. J. Lasers, 2016, 43(4): 0403003
[14] 陈德宁, 刘婷婷, 廖文和等. 扫描策略对金属粉末选区激光熔化温度场的影响 [J]. 中国激光, 2016, 43(4): 0403003
[15] Xu R J. Finite element analysis and scanning strategy optimization based on selective laser melting [D]. Chongqing: Chongqing University, 2016
[15] 徐仁俊. 基于选择性激光熔化技术的有限元分析和扫描路径优化 [D]. 重庆: 重庆大学, 2016
[16] Wei L, Lin X, Wang M, et al. Numerical simulation on laser additive manufacturing process for metal components [J]. Aeronaut. Manuf. Technol., 2017, (13): 16
[16] 魏 雷, 林 鑫, 王 猛等. 金属激光增材制造过程数值模拟 [J]. 航空制造技术, 2017, (13): 16
[17] Cheng Y H. Numerical simulation and experimental research of selective laser melting on nickel based alloy powder GH4169 [D]. Taiyuan: North University of China, 2016
[17] 成雅徽. GH4169合金粉末选区激光熔化成形数值模拟及试验研究 [D]. 太原: 中北大学, 2016
[18] Zhang Y J, Song B, Zhao X, et al. Selective laser melting and subtractive hybrid manufacture AISI420 stainless steel: Evolution on surface roughness and residual stress [J]. J. Mech. Eng., 2018, 54(13): 170
[18] 章媛洁, 宋 波, 赵 晓等. 激光选区熔化增材与机加工复合制造AISI 420不锈钢: 表面粗糙度与残余应力演变规律研究 [J]. 机械工程学报, 2018, 54(13): 170
[19] Peng G Y. Numerical simulation on temperature field and stress field during selective laser melting of titanium alloy [D]. Wuhan: Huazhong University of Science and Technology, 2018
[19] 彭刚勇. 激光选区熔化成形钛合金温度场和应力场数值模拟 [D]. 武汉: 华中科技大学, 2018
[20] Parry L, Ashcroft I A, Wildman R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation [J]. Addit. Manuf., 2016, 12: 1
[21] Yadroitsev I, Yadroitsava I. Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting [J]. Virtual Phys. Prototyping, 2015, 10: 67
[22] Ali H, Ghadbeigi H, Mumtaz K. Effect of scanning strategies on residual stress and mechanical properties of selective laser melted Ti6Al4V [J]. Mater. Sci. Eng., 2018, A712: 175
[23] Denlinger E R, Gouge M, Irwin J, et al. Thermomechanical model development and in situ experimental validation of the laser powder-bed fusion process [J]. Addit. Manuf., 2017, 16: 73
[24] Li Y L, Zhou K, Tan P F, et al. Modeling temperature and residual stress fields in selective laser melting [J]. Int. J. Mech. Sci., 2018, 136: 24
[25] Yin J, Zhu H H, Ke L D, et al. Simulation of temperature distribution in single metallic powder layer for laser micro-sintering [J]. Comput. Mater. Sci., 2012, 53: 333
[26] Carslaw H S, Jaeger J C. Conduction of Heat in Solids [M]. 2nd Ed., Oxford, United Kingdom: Oxford University Press, 1986: 1
[27] Yin J, Zhu H H, Ke L D, et al. A finite element model of thermal evolution in laser micro sintering [J]. Int. J. Adv. Manuf. Technol., 2016, 83: 1847
[28] Foroozmehr A, Badrossamay M, Foroozmehr E, et al. Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed [J]. Mater. Des., 2016, 89: 255
[29] Xia M J, Gu D D, Yu G Q, et al. Influence of hatch spacing on heat and mass transfer, thermodynamics and laser processability during additive manufacturing of Inconel 718 alloy [J]. Int. J. Mach. Tools Manuf., 2016, 109: 147
[30] Steen W. Laser Material Processing [M]. 3rd Ed., London: Springer-Verlag, 2003: 1
[31] Chen C P, Yin J, Zhu H H, et al. Effect of overlap rate and pattern on residual stress in selective laser melting [J]. Int. J. Mach. Tools Manuf., 2019, 145: 103433
[32] Zhang W Q, Zhu H H, Hu Z H, et al. Study on the selective laser melting of AlSi10Mg [J]. Acta Metall. Sin., 2017, 53: 918
[32] 张文奇, 朱海红, 胡志恒等. AlSi10Mg的激光选区熔化成形研究 [J]. 金属学报, 2017, 53: 918
[33] Liu S W, Zhu H H, Peng G Y, .et al. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis [J]. Mater. Des., 2018, 142: 319
[34] Yin J, Peng G Y, Chen C P, et al. Thermal behavior and grain growth orientation during selective laser melting of Ti-6Al-4V alloy [J]. J. Mater. Process. Technol., 2018, 260: 57
[35] Mills K C. Recommended Values of Thermophysical Properties for Selected Commercial Alloys [M]. Cambridge, England: Woodhead Publishing Limited, 2002: 211
[36] Rangaswamy P, Prime M B, Daymond M, et al. Comparison of residual strains measured by X-ray and neutron diffraction in a titanium (Ti-6Al-4V) matrix composite [J]. Mater. Sci. Eng., 1999, A259: 209
[37] Yin J, Wang D Z, Yang L L, et al. Correlation between forming quality and spatter dynamics in laser powder bed fusion [J]. Addit. Manuf., 2020, 31: 100958
[38] Yin J, Yang L L, Yang X, et al. High-power laser-matter interaction during laser powder bed fusion [J]. Addit. Manuf., 2019, 29: 100778
[39] Wei H L, Elmer J W, DebRoy T. Origin of grain orientation during solidification of an aluminum alloy [J]. Acta Mater., 2016, 115: 123
[40] Wei H L, Knapp G L, Mukherjee T, et al. Three-dimensional grain growth during multi-layer printing of a nickel-based alloy Inconel 718 [J]. Addit. Manuf., 2019, 25: 448
[41] Huang W D, Lin X, Chen J, et al. Laser Solid Forming [M]. Xi'an: Northwest University Press, 2007: 1
[41] 黄卫东, 林 鑫, 陈 静等. 激光立体成形 [M]. 西安: 西北工业大学出版社, 2007: 1
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[3] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[4] 卢振洋,田宏宇,陈树君,李方. 电弧增减材复合制造精度控制研究进展[J]. 金属学报, 2020, 56(1): 83-98.
[5] 谭超林,周克崧,马文有,曾德长. 激光增材制造成型马氏体时效钢研究进展[J]. 金属学报, 2020, 56(1): 36-52.
[6] 吴正凯, 吴圣川, 张杰, 宋哲, 胡雅楠, 康国政, 张海鸥. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55(7): 811-820.
[7] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[8] 杜随更,高漫,徐婉婷,王喜锋. TC11/TC17钛合金线性摩擦焊接头界面研究[J]. 金属学报, 2019, 55(7): 885-892.
[9] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[10] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[11] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[12] 田银宝, 申俊琦, 胡绳荪, 勾健. 丝材+电弧增材制造钛/铝异种金属反应层的研究[J]. 金属学报, 2019, 55(11): 1407-1416.
[13] 何波, 邢盟, 杨光, 邢飞, 刘祥宇. 成分梯度对激光沉积制造TC4/TC11连接界面组织和性能的影响[J]. 金属学报, 2019, 55(10): 1251-1259.
[14] 闵小华, 向力, 李明佳, 姚凯, 江村聪, 程从前, 土谷浩一. {332}<113>孪晶与等温ω相的组合对不同O含量Ti-15Mo合金力学性能的影响[J]. 金属学报, 2018, 54(9): 1262-1272.
[15] 高飘, 魏恺文, 喻寒琛, 杨晶晶, 王泽敏, 曾晓雁. 分层厚度对选区激光熔化成形Ti-5Al-2.5Sn合金组织与性能的影响规律[J]. 金属学报, 2018, 54(7): 999-1009.