Please wait a minute...
金属学报  2019, Vol. 55 Issue (6): 683-691    DOI: 10.11900/0412.1961.2018.00517
  本期目录 | 过刊浏览 |
纳米增强体强化轻合金复合材料制备及构型设计研究进展与展望
王慧远,李超,李志刚,徐进,韩洪江,管志平,宋家旺,王珵,马品奎()
吉林大学材料科学与工程学院汽车材料教育部重点实验室 长春 130025
Current Research and Future Prospect on the Preparation and Architecture Design of Nanomaterials Reinforced Light Metal Matrix Composites
Huiyuan WANG,Chao LI,Zhigang LI,Jin XU,Hongjiang HAN,Zhiping GUAN,Jiawang SONG,Cheng WANG,Pinkui MA()
Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130025, China
全文: PDF(5830 KB)   HTML
摘要: 

纳米增强体强化轻合金复合材料以其室温强度高、塑性好,耐磨损和优异的高温性能等特点,并兼有结构和功能一体化特性,成为近年来金属基复合材料(MMCs)领域的研究热点之一。实现纳米增强体的弥散分布或构型设计、改善界面结合是纳米增强体强化轻合金复合材料可控制备的重要挑战。本文重点概述了纳米增强体强化轻合金复合材料在制备策略、多尺度混杂增强、增强体构型设计以及新型加工制备技术等方面的研究进展,展望了轻合金复合材料在高强塑性能、构型优化以及结构功能一体化等方面的发展方向。

关键词 纳米增强体轻合金复合材料构型设计混杂增强结构功能一体化    
Abstract

In recent years, nanomaterials reinforced light metal matrix composites (LMMCs) have been researched widely, due to the enhancement in strength and ductility at room temperature, good wear resistance, excellent high temperature performance and structural-functional integration. However, there remain many challenges in developing high-performance nanomaterials reinforced LMMCs to date. The challenges mainly concentrate in the attainment of homogeneous dispersion or a controlled inhomogeneous microstructure of nanomaterials reinforcements, and the formation of the strong interfacial bonding. In the present review, therefore, current developments in fabrication, multi-scale hybrid reinforcement, novel architecture design and new processing method have been addressed. Moreover, further research interests related to the designs of nanomaterials reinforced LMMCs exhibiting high strength and plasticity, optimal architecture design and structural-functional integration have been proposed.

Key wordsnanomaterial reinforcement    light metal matrix composite    architecture design    hybrid reinforcement    structural-functional integration
收稿日期: 2018-11-16     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划国际合作项目(No.2016YFE0115300);国家自然科学基金项目(No.51625402)
通讯作者: 马品奎     E-mail: mapk@jlu.edu.cn
Corresponding author: Pinkui MA     E-mail: mapk@jlu.edu.cn
作者简介: 王慧远,男,1974年生,教授,博士

引用本文:

王慧远,李超,李志刚,徐进,韩洪江,管志平,宋家旺,王珵,马品奎. 纳米增强体强化轻合金复合材料制备及构型设计研究进展与展望[J]. 金属学报, 2019, 55(6): 683-691.
Huiyuan WANG, Chao LI, Zhigang LI, Jin XU, Hongjiang HAN, Zhiping GUAN, Jiawang SONG, Cheng WANG, Pinkui MA. Current Research and Future Prospect on the Preparation and Architecture Design of Nanomaterials Reinforced Light Metal Matrix Composites. Acta Metall Sin, 2019, 55(6): 683-691.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00517      或      https://www.ams.org.cn/CN/Y2019/V55/I6/683

图1  溶剂辅助分散加机械球磨法制备SiC/Mg-8Al-1Sn纳米复合粉末示意图

Architecture

Material

(volume fraction / %)

Processing

E

GPa

UTS

MPa

YS

MPa

δ

%

Ref.

Homogeneous0.5SiC/Mg-8Al-1SnPM+hot extrusion-3812398.3[8]
Mg-8Al-1Sn--3181754.5[8]
0.8SiC/2014AlPM+hot extrusion73.55733789.0[10]
2014AlPM+hot extrusion71.651331012.5[10]
5Al2O3/7075AlMechanical alloying-443-2.1[11]
3CNT/AlFPM+HEBM91.0406-8.8[12]
AlFPM70.6245-15.8[12]
1.5CNT/Al-Zn-Mg-CuFPM-SSBM78.06986954.4[13]
(8.15TiB+1.25TiC+0.59La2O3)/TiIn situ synthesized129.51298.51170.84.2[14]
TiIn situ synthesized112.81051.1934.310.2[14]
(1.2TiC+2.5TiB+1.3Nd2O3)/TiIn situ synthesized-1150-1.0[15]
Laminated5TiBw/TiReaction hot pressing-61749724.5[16]
1.5RGO/AlFPM87302-5.3[17]
3D network(5TiB+5TiC)/Ti64Reaction hot pressing-126711536.1[18]
Ti64Reaction hot pressing-94482313.0[18]
Two-scale network

(4Ti5Si3+3.4TiBw)/Ti64

Reaction hot pressing

-

1180

1050

5.0

[19]

表1  不同纳米增强体强化轻合金复合材料的力学性能[8,10,11,12,13,14,15,16,17,18,19]
图2  Al-20%Mg2Si (质量分数)中初生Mg2Si三维形貌图
图3  4种典型的纳米增强体强化轻合金复合材料构型设计
图4  片状粉末冶金法制备层状构型还原氧化石墨烯/Al纳米复合材料示意图
[1] Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites [J]. Mater. Sci. Eng., 2000, R29: 49
[2] Tjong S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets [J]. Mater. Sci. Eng., 2013, R74: 281
[3] Watanabe Y, Inaguma Y, Sato H, et al. A Novel fabrication method for functionally graded materials under centrifugal force: The Centrifugal mixed-powder method [J]. Materials, 2009, 2: 2510
[4] Li Y Z, Wang Q Z, Wang W G, et al. Interfacial reaction mechanism between matrix and reinforcement in B4C/6061Al composites [J]. Mater. Chem. Phys., 2015, 154: 107
[5] Wu H, Leng J F, Teng X Y, et al. Strain partitioning behavior of in situ Ti5Si3/TiAl composites [J]. J. Alloys Compd., 2018, 744: 182
[6] Fan G L, Huang H Y, Tan Z Q, et al. Grain refinement and superplastic behavior of carbon nanotube reinforced aluminum alloy composite processed by cold rolling [J]. Mater. Sci. Eng., 2017, A708: 537
[7] Huang L J, Geng L, Peng H X. Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal? [J]. Prog. Mater. Sci., 2015, 71: 93
[8] Li C P, Wang Z G, Wang H Y, et al. Fabrication of nano-SiC particulate reinforced Mg-8Al-1Sn composites by powder metallurgy combined with hot extrusion [J]. J. Mater. Eng. Perform., 2016, 25: 5049
[9] Wang Z G, Li C P, Wang H Y, et al. Aging behavior of nano-SiC/2014Al composite fabricated by powder metallurgy and hot extrusion techniques [J]. J. Mater. Sci. Technol., 2016, 32: 1008
[10] Wang Z G, Li C P, Wang H Y, et al. Effect of nano-SiC content on mechanical properties of SiC/2014Al composites fabricated by powder metallurgy combined with hot extrusion [J]. Powder Metall., 2016, 59: 236
[11] Mobasherpour I, Tofigh A A, Ebrahimi M. Effect of nano-size Al2O3 reinforcement on the mechanical behavior of synthesis 7075 aluminum alloy composites by mechanical alloying [J]. Mater. Chem. Phys., 2013, 138: 535
[12] Fan G L, Jiang Y, Tan Z Q, et al. Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy [J]. Carbon, 2018, 130: 333
[13] Xu R, Tan Z Q, Fan G L, et al. High-strength CNT/Al-Zn-Mg-Cu composites with improved ductility achieved by flake powder metallurgy via elemental alloying [J]. Composites, 2018, 111A: 1
[14] Yang Z F, Lu W J, Zhao L, et al. Microstructure and mechanical property of in situ synthesized multiple-reinforced (TiB+TiC+La2O3)/Ti composites [J]. J. Alloys Compd., 2008, 455: 210
[15] Yang Z F, Lu W J, Xu D, et al. In situ synthesis of hybrid and multiple-dimensioned titanium matrix composites [J]. J. Alloys Compd., 2006, 419: 76
[16] Liu B X, Huang L J, Geng L, et al. Fracture behaviors and microstructural failure mechanisms of laminated Ti-TiBw/Ti composites [J]. Mater. Sci. Eng., 2014, A611: 290
[17] Li Z, Guo Q, Li Z Q, et al. Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure [J]. Nano Lett., 2015, 15: 8077
[18] Huang L Q, Wang L H, Qian M, et al. High tensile-strength and ductile titanium matrix composites strengthened by TiB nanowires [J]. Scr. Mater., 2017, 141: 133
[19] Jiao Y, Huang L J, An Q, et al. Effects of Ti5Si3 characteristics adjustment on microstructure and tensile properties of in-situ (Ti5Si3+TiBw)/Ti6Al4V composites with two-scale network architecture [J]. Mater. Sci. Eng., 2016, A673: 595
[20] Nampoothiri J, Harini R S, Nayak S K, et al. Post in-situ reaction ultrasonic treatment for generation of Al-4.4Cu/TiB2 nanocomposite: A route to enhance the strength of metal matrix nanocomposites [J]. J. Alloys Compd., 2016, 683: 370
[21] Xiao P, Gao Y M, Yang C C, et al. Microstructure, mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles [J]. Mater. Sci. Eng., 2018, A710: 251
[22] Song M S, Zhang M X, Zhang S G, et al. In situ fabrication of TiC particulates locally reinforced aluminum matrix composites by self-propagating reaction during casting [J]. Mater. Sci. Eng., 2008, A473: 166
[23] Zhou D S, Qiu F, Jiang Q C. The nano-sized TiC particle reinforced Al-Cu matrix composite with superior tensile ductility [J]. Mater. Sci. Eng., 2015, A622: 189
[24] Wang H Y, Yu H C, Li C, et al. Morphology evolution of primary Mg2Si in Al-20Mg2Si-0.1Ca alloys prepared with various solidification cooling rates [J]. CrystEngComm, 2017, 19: 1680
[25] Wang H Y, Zhu J N, Li J H, et al. Refinement and modification of primary Mg2Si in an Al-20Mg2Si alloy by a combined addition of yttrium and antimony [J]. CrystEngComm, 2017, 19: 6365
[26] Razaghian A, Bahrami A, Emamy M. The influence of Li on the tensile properties of extruded in situ Al-15%Mg2Si composite [J]. Mater. Sci. Eng., 2012, A532: 346
[27] Bian L P, Liang W, Xie G Y, et al. Enhanced ductility in an Al-Mg2Si in situ composite processed by ECAP using a modified BC route [J]. Mater. Sci. Eng., 2011, A528: 3463
[28] Li Z D, Li C, Liu Y C, et al. Effect of heat treatment on microstructure and mechanical property of Al-10%Mg2Si alloy [J]. J. Alloys Compd., 2016, 663: 16
[29] Zhao N Q, Liu X H, Pu B W. Progress on multi-dimensional carbon nanomaterials reinforced aluminum matrix composites: A review [J]. Acta Metall. Sin., 2019, 55: 1
[29] (赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展 [J]. 金属学报, 2019, 55: 1)
[30] Gao X, Yue H Y, Guo E J, et al. Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites [J]. Mater. Des., 2016, 94: 54
[31] Saba F, Sajjadi S A, Haddad-Sabzevar M, et al. Exploring the reinforcing effect of TiC and CNT in dual-reinforced Al-matrix composites [J]. Diam. Relat. Mater., 2018, 89: 180
[32] Wang Y, Shen P, Guo R F, et al. Developing high toughness and strength Al/TiC composites using ice-templating and pressure infiltration [J]. Ceram. Int., 2017, 43: 3831
[33] Jiang L, Li Z Q, Fan G L, et al. A flake powder metallurgy approach to Al2O3/Al biomimetic nanolaminated composites with enhanced ductility [J]. Scr. Mater., 2011, 65: 412
[34] Wu H, Fan G H, Huang M, et al. Fracture behavior and strain evolution of laminated composites [J]. Compos. Struct., 2017, 163: 123
[35] Launey M E, Munch E, Alsem D H, et al. A novel biomimetic approach to the design of high-performance ceramic-metal composites [J]. J. Roy. Soc. Interface, 2010, 7: 741
[36] Zhang H, Shen P, Shaga A, et al. Preparation of nacre-like composites by reactive infiltration of a magnesium alloy into porous silicon carbide derived from ice template [J]. Mater. Lett., 2016, 183: 299
[37] Yang F, Kong F T, Chen Y Y, et al. Effect of spark plasma sintering temperature on the microstructure and mechanical properties of a Ti2AlC/TiAl composite [J]. J. Alloys Compd., 2010, 496: 462
[38] Huang L J, Geng L, Wang B, et al. Effects of volume fraction on the microstructure and tensile properties of in situ TiBw/Ti6Al4V composites with novel network microstructure [J]. Mater. Des., 2013, 45: 532
[39] Wang H Y, Zhang H, Xu X Y, et al. Current research and future prospect on microstructure stability of superplastic light alloys [J]. Acta Metall. Sin., 2018, 54: 1618
[39] (王慧远, 张 行, 徐新宇等. 超塑性轻合金组织稳定性的研究进展及展望 [J]. 金属学报, 2018, 54: 1618)
[40] Jamian S, Watanabe Y, Sato H. Formation of compositional gradient in Al/SiC FGMs fabricated under huge centrifugal forces using solid-particle and mixed-powder methods [J]. Ceram. Int., 2019, 45: 9444
[41] Tammas-Williams S, Todd I. Design for additive manufacturing with site-specific properties in metals and alloys [J]. Scr. Mater., 2017, 135: 105
[42] Wong J C, Paramsothy M, Gupta M. Using Mg and Mg-nanoAl2O3 concentric alternating macro-ring material design to enhance the properties of magnesium [J]. Compos. Sci. Technol., 2009, 69: 438
[43] Feng S W, Guo Q, Li Z, et al. Strengthening and toughening mechanisms in graphene-Al nanolaminated composite micro-pillars [J]. Acta Mater., 2017, 125: 98
[1] 陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出强化模型[J]. 金属学报, 2021, 57(3): 353-362.
[2] 高一涵, 刘刚, 孙军. 耐热铝基合金研究进展:微观组织设计与析出策略[J]. 金属学报, 2021, 57(2): 129-149.
[3] 朱士泽 王东 王全兆 肖伯律 马宗义. Cu含量对SiCp/Al-Mg-Si-Cu复合材料自然时效负面效应的影响[J]. 金属学报, 0, (): 0-0.
[4] 毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.
[5] 樊永霞 王建 张学哲 王建忠 汤慧萍. SEBM成形片状极小曲面点阵材料的力学性能[J]. 金属学报, 0, (): 0-0.
[6] 杜子杰, 李文渊, 刘建荣, 锁红波, 王清江. CMT增材制造TC4-DT合金组织均匀性与力学性能一致性研究[J]. 金属学报, 2020, 56(12): 1667-1680.
[7] 曹富荣 丁鑫 项超 尚会会. Mg-4.4Li-2.5Zn-0.46Al-0.74Y合金高温变形流动应力、组织演变与本构分析[J]. 金属学报, 0, (): 0-0.
[8] 程伟丽 谷雄杰 成世明 陈宇航 余晖 王利飞 王红霞. 镁空气电池阳极用挤压态Mg-2Bi-0.5Ca-0.5In合金的放电性能和电化学行为[J]. 金属学报, 0, (): 0-0.
[9] 李吉臣, 冯迪, 夏卫生, 郭为民, 王国迎. 7055铝合金的非等温双级时效行为[J]. 金属学报, 2020, 56(11): 1495-1506.
[10] 朱伟强, 俞牧知, 唐旭, 陈孝阳, 许征兵, 曾建民. ErSi对铝基储热合金导热系数及相变潜热的影响[J]. 金属学报, 2020, 56(11): 1485-1494.
[11] 王悦 王继杰 张昊 赵泓博 倪丁瑞 肖伯律 马宗义. 热处理对激光选区熔化AlSi10Mg合金显微组织及力学性能的影响[J]. 金属学报, 0, (): 0-0.
[12] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[13] 张婷 李仲杰 许浩 董安平 杜大帆 邢辉 汪东红 孙宝德. 激光沉积法制备Ti/TNTZO层状材料及其组织性能研究[J]. 金属学报, 0, (): 0-0.
[14] 张海军, 邱实, 孙志梅, 胡青苗, 杨锐. 无序β-Ti1-xNbx合金自由能及弹性性质的第一性原理计算:特殊准无序结构和相干势近似的比较[J]. 金属学报, 2020, 56(9): 1304-1312.
[15] 王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.