Please wait a minute...
金属学报  2018, Vol. 54 Issue (12): 1767-1776    DOI: 10.11900/0412.1961.2018.00051
  本期目录 | 过刊浏览 |
层间温度对9%Cr热强钢管道多层多道焊接头残余应力的影响
胡磊1, 王学1,2(), 尹孝辉1, 刘洪3, 马群双1
1 安徽工业大学材料科学与工程学院 马鞍山 243032
2 武汉大学动力与机械学院 武汉 430072
3 东方电气集团东方锅炉股份有限公司 自贡 643001
Influence of Inter-Pass Temperature on Residual Stress in Multi-Layer and Multi-Pass Butt-Welded 9%Cr Heat-Resistant Steel Pipes
Lei HU1, Xue WANG1,2(), Xiaohui YIN1, Hong LIU3, Qunshuang MA1
1 School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
2 School of Power and Mechanics, Wuhan University, Wuhan 430072, China
3 Dong Fang Boiler Group Co., Ltd., Dong Fang Electric Corporation, Zigong 643001, China
全文: PDF(10027 KB)   HTML
摘要: 

使用有限元法研究了不同层间温度(IPT)时,在9%Cr热强钢管道多层多道焊接头残余应力演化中马氏体相变作用的差异,揭示了层间温度对残余应力作用的机理。结果表明,提高层间温度可以显著降低接头内的残余拉应力,特别是管道中部区域焊缝(WM)内的残余拉应力降低明显。其机理主要有2方面:一是提高层间温度可保留较高含量的奥氏体,屈服强度低的奥氏体在冷却时积累的残余拉应力较低;二是高的层间温度阻止了马氏体相变在每道焊道焊完后立即进行,从而避免了马氏体相变降低拉应力的效果被后焊焊道的焊接热循环所消除和在随后焊道的焊接热循环中重新积累较大的拉应力。层间温度对9%Cr热强钢管道多层多道焊残余应力分布的影响取决于热收缩和马氏体相变的综合作用,当层间温度较低(低于马氏体转变终了温度Mf)时,热收缩占主导作用,此时接头的大部分区域以残余拉应力为主,只在末道焊道焊缝及其热影响区(HAZ)内形成较大的压应力;当层间温度较高(高于马氏体转变开始温度Ms)时,马氏体相变占主导作用,此时接头以残余压应力为主。

关键词 9%Cr热强钢多层多道焊层间温度残余应力数值模拟    
Abstract

9%Cr heat-resistant steels have been abundantly used in boilers of modern thermal plants. The 9%Cr steel components in thermal plant boilers are usually assembled by fusion welding. Many of the degradation mechanisms of welded joints can be aggravated by welding residual stress. Tensile residual stress in particular can exacerbate cold cracking tendency, fatigue crack development and the onset of creep damage in heat-resistant steels. It has been recognized that welding residual stress can be mitigated by low temperature martensitic transformation in 9%Cr heat-resistant steel. Nevertheless, the stress mitigation effect seems to be confined around the final weld pass in multi-layer and multi-pass 9%Cr steel welded pipes. The purpose of this work is to investigate the method to break through this confine. Influence of martensitic transformation on welding stress evolution in multi-layer and multi-pass butt-welded 9%Cr heat-resistant steel pipes for different inter-pass temperatures (IPT) was investigated through finite element method, and the influential mechanism of IPT on welding residual stress was revealed. The results showed that tensile residual stress in weld metal (WM) and heat affected zone (HAZ), especially the noteworthy tensile stress in WM at pipe central, was effectively mitigated with the increasing of IPT. The reasons lie in two aspects, firstly, there is more residual austenite in the case of higher IPT, as a result, lower tensile stress is accumulated during cooling due to the lower yield strength of austenite; secondly, the higher IPT suppresses the martensitic transformation during cooling of each weld pass, thus the tensile stress mitigation due to martensitic transformation was avoided to be eliminated by welding thermal cycles of subsequent weld passes and reaccumulating tensile residual stress. The influence of IPT on welding residual stress relies on the combined contribution of thermal contraction and martensitic transformation. When the IPT is lower than martensite transformation finishing temperature (Mf), thermal contraction plays the dominant role in the formation of welding residual stress, and tensile stress was formed in the majority of weld zone except the final weld pass. While, compressive stress was formed in almost whole weld zone due to martensitic transformation when the IPT is higher than martensite transformation starting temperature (Ms).

Key words9%Cr heat-resistant steel    multi-layer and multi-pass welding    inter-pass temperature    residual stress    numerical simulation
收稿日期: 2018-02-02     
ZTFLH:  TG404  
基金资助:国家自然科学基金项目Nos.51374153和51574181及四川省科技计划项目No.2018JY0668
作者简介:

作者简介 胡 磊,男,1988年生,博士

引用本文:

胡磊, 王学, 尹孝辉, 刘洪, 马群双. 层间温度对9%Cr热强钢管道多层多道焊接头残余应力的影响[J]. 金属学报, 2018, 54(12): 1767-1776.
Lei HU, Xue WANG, Xiaohui YIN, Hong LIU, Qunshuang MA. Influence of Inter-Pass Temperature on Residual Stress in Multi-Layer and Multi-Pass Butt-Welded 9%Cr Heat-Resistant Steel Pipes. Acta Metall Sin, 2018, 54(12): 1767-1776.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00051      或      https://www.ams.org.cn/CN/Y2018/V54/I12/1767

图1  有限元计算模型和焊缝附近网格划分
图2  图1中点A在前2道焊道中的焊接热循环
图3  4组计算中管道纵截面内轴向和环向残余应力计算结果
图4  层间温度对管道壁厚方向残余应力分布的影响
图5  Satoh实验计算模型与约束条件示意图
Case Tp1 / ℃ Ti / ℃ Tp2 / ℃
I 1350 - -
II 800 - -
III 1350 102 1350
IV 1350 375 1350
V 1350 102 800
VI 1350 375 800
表1  Satoh实验的计算条件
图6  Satoh实验模拟结果
图7  第3道焊缝焊完后的轴向和环向应力分布
图8  第7道焊缝焊完后的轴向和环向应力分布
[1] Abson D J, Rothwell J S.Review of type IV cracking of weldments in 9-12%Cr creep strength enhanced ferritic steels[J]. Int. Mater. Rev., 2013, 58: 437
[2] Wang X, Wang X, Li H J, et al.Laves phase precipitation behavior in the simulated fine-grained heat-affected zone of creep strength enhanced ferritic steel P92 and its role in creep void nucleation and growth[J]. Weld. World, 2017, 61: 231
[3] Liu W, Lu F G, Wei Y H, et al.Special zone in multi-layer and multi-pass welded metal and its role in the creep behavior of 9Cr-1Mo welded joint[J]. Mater. Des., 2016, 108: 195
[4] Paddea S, Francis J A, Paradowska A M, et al.Residual stress distributions in a P91 steel-pipe girth weld before and after post weld heat treatment[J]. Mater. Sci. Eng., 2012, A534: 663
[5] Francis J A, Bhadeshia H K D H, Withers P J. Welding residual stresses in ferritic power plant steels[J]. Mater. Sci. Technol., 2007, 23: 1009
[6] Ooi S W, Garnham J E, Ramjaun T I.Review: Low transformation temperature weld filler for tensile residual stress reduction[J]. Mater. Des., 2014, 56: 773
[7] Wang X, Li Y, Ren Y Y, et al.Effect of Laves phase precipitation on redistribution of alloying elements in P92 steel[J]. Acta Metall. Sin., 2014, 50: 1203(王学, 李勇, 任遥遥等. Laves相析出对P92钢合金元素再分布的影响[J]. 金属学报, 2014, 50: 1203)
[8] Yang J P, Guo J, Qiao Y X.Study on welding procedure of P92 steel using in ultra supercritical plants[J]. Proc. CSEE, 2007, 27(23): 55(杨建平, 郭军, 乔亚霞. 超超临界机组用P92钢焊接技术的研究[J]. 中国电机工程学报, 2007, 27(23): 55)
[9] Qiao Y X, Guo J.P92 steel (martensitic steel) welding used for power plant boilers[J]. Electr. Power Constr., 2007, 28(6): 87(乔亚霞, 郭军. 电站锅炉用马氏体耐热钢P92钢的焊接[J]. 电力建设, 2007, 28(6): 87)
[10] Richardot D, Vaillant J C, Arbab A, et al.The T92/P92 Book[M]. Boulogne: Vallourec & Mannesmann Tubes, 2000: 7
[11] Haarmann K, Vailant J C, Vandenberghe B, et al.The T91/P91 Book[M]. Boulogne: Vallourec & Mannesmann Tubes, 1999: 6
[12] Wang X, Hu L, Chen D X, et al.Effect of martensitic transformation on stress evolution in multi-pass butt-welded 9%Cr heat-resistant steel pipes[J]. Acta Metall. Sin., 2017, 53: 888(王学, 胡磊, 陈东旭等. 马氏体相变对9%Cr热强钢管道多道焊接头残余应力演化的影响[J]. 金属学报, 2017, 53: 888)
[13] Wang Z Y, Li S J, Hao X J, et al.Ultrasonic testing of interlayer cracks in P91 butt weld[J]. Nondestr. Test., 2011, 33(5): 54(王志永, 李树军, 郝晓军等. P91钢管对接焊缝层间裂纹的超声波检测[J]. 无损检测, 2011, 33(5): 54)
[14] Chen J P, Yang W F, Han T, et al.The ultrasonic testing of micro-crack in P91/92 steel pipe butt weld[J]. Nondestr. Test., 2016, 38(8): 44(陈君平, 杨文峰, 韩腾等. P91/P92钢管道对接焊缝微裂纹的超声波检测[J]. 无损检测, 2016, 38(8): 44)
[15] Javadi Y, Smith M C, Abburi Venkata K, et al.Residual stress measurement round robin on an electron beam welded joint between austenitic stainless steel 316L(N) and ferritic steel P91 [J]. Int. J. Press. Vessels Pip., 2017, 154: 41
[16] Pu X W, Zhang C H, Li S, et al.Simulating welding residual stress and deformation in a multi-pass butt-welded joint considering balance between computing time and prediction accuracy[J]. Int. J. Adv. Manuf. Technol., 2017, 93: 2215
[17] Deng D A, Ren S D, Li S, et al.Influence of multi-thermal cycle and constraint condition on residual stress in P92 steel weldment[J]. Acta Metall. Sin., 2017, 53: 1532(邓德安, 任森栋, 李索等. 多重热循环和约束条件对P92钢焊接残余应力的影响[J]. 金属学报, 2017, 53: 1532)
[18] Galler J P, Dupont J N, Siefert J A.Influence of alloy type, peak temperature and constraint on residual stress evolution in Satoh test[J]. Sci. Technol. Weld. Joining, 2016, 21: 106
[19] Thomas S H, Liu S.Analysis of low transformation temperature welding (LTTW) consumables-distortion control and evolution of stresses[J]. Sci. Technol. Weld. Joining, 2014, 19: 392
[20] Yaghi A H, Hyde T H, Becker A A, et al.Finite element simulation of welding and residual stresses in a P91 steel pipe incorporating solid-state phase transformation and post-weld heat treatment[J]. J. Strain Anal. Eng. Des., 2008, 43: 275
[21] Koistinen D P, Marburger R E.A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metall., 1959, 7: 59
[22] Wang X, Pan Q G, Tao Y S, et al.Type IV creep rupture characteristics of P92 steel weldment[J]. Acta Metall. Sin., 2012, 48: 427(王学, 潘乾刚, 陶永顺等. P92钢焊接接头IV型蠕变断裂特性[J]. 金属学报, 2012, 48: 427)
[23] Yaghi A H, Hyde T H, Becker A A, et al.Finite element simulation of welded P91 steel pipe undergoing post-weld heat treatment[J]. Sci. Technol. Weld. Joining, 2011, 16: 232
[24] Deng D A, Zhang Y B, Li S, et al.Influence of solid-state phase transformation on residual stress in P92 steel welded joint[J]. Acta Metall. Sin., 2016, 52: 394(邓德安, 张彦斌, 李索等. 固态相变对P92钢焊接接头残余应力的影响[J]. 金属学报, 2016, 52: 394)
[25] Li S, Ren S D, Zhang Y B, et al.Numerical investigation of formation mechanism of welding residual stress in P92 steel multi-pass joints[J]. J. Mater. Process. Technol., 2017, 244: 240
[26] Radaj D.Heat Effects of Welding: Temperature Field, Residual Stress, Distortion[M]. Berlin: Springer-Verlag, 1992: 174
[1] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[2] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[3] 毕中南,秦海龙,董志国,王相平,王鸣,刘永泉,杜金辉,张继. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9): 1160-1174.
[4] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[5] 秦海龙,张瑞尧,毕中南,杜洪标,张金辉. GH4169合金圆盘时效过程残余应力的演化规律研究[J]. 金属学报, 2019, 55(8): 997-1007.
[6] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[7] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[8] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.
[9] 张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580.
[10] 李军, 夏明许, 胡侨丹, 李建国. 大型铸锭均质化问题及其新解[J]. 金属学报, 2018, 54(5): 773-788.
[11] 文舒, 董安平, 陆燕玲, 祝国梁, 疏达, 孙宝德. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3): 393-403.
[12] 刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484.
[13] 刘政, 陈志平, 陈涛. 坩埚尺寸和电磁频率对半固态A356铝合金浆料流动的影响[J]. 金属学报, 2018, 54(3): 435-442.
[14] 王锦程, 郭灿, 张琪, 唐赛, 李俊杰, 王志军. 原子尺度下凝固形核计算模拟研究的进展[J]. 金属学报, 2018, 54(2): 204-216.
[15] 沈厚发, 陈康欣, 柳百成. 钢锭铸造过程宏观偏析数值模拟[J]. 金属学报, 2018, 54(2): 151-160.