Please wait a minute...
金属学报  2018, Vol. 54 Issue (12): 1745-1755    DOI: 10.11900/0412.1961.2018.00174
  本期目录 | 过刊浏览 |
工具转速对搅拌摩擦加工Mg-Zn-Y-Zr耐热镁合金超塑性行为的影响
谢广明1(), 马宗义2, 薛鹏2, 骆宗安1, 王国栋1
1 东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
2 中国科学院金属研究所 沈阳 110016
Effects of Tool Rotation Rates on Superplastic Deformation Behavior of Friction Stir Processed Mg-Zn-Y-Zr Alloy
Guangming XIE1(), Zongyi MA2, Peng XUE2, Zongan LUO1, Guodong WANG1
1 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

谢广明, 马宗义, 薛鹏, 骆宗安, 王国栋. 工具转速对搅拌摩擦加工Mg-Zn-Y-Zr耐热镁合金超塑性行为的影响[J]. 金属学报, 2018, 54(12): 1745-1755.
Guangming XIE, Zongyi MA, Peng XUE, Zongan LUO, Guodong WANG. Effects of Tool Rotation Rates on Superplastic Deformation Behavior of Friction Stir Processed Mg-Zn-Y-Zr Alloy[J]. Acta Metall Sin, 2018, 54(12): 1745-1755.

全文: PDF(10684 KB)   HTML
摘要: 

在800~1600 r/min工具转速和100 mm/min固定行进速度的较宽热输入范围内,对6 mm厚的热挤压态Mg-Zn-Y-Zr耐热镁合金板进行搅拌摩擦加工(FSP),获得了由均匀、细小的等轴再结晶晶粒和细小、弥散的Mg-Zn-Y三元W相构成的FSP样品。随着工具转速的增加,FSP样品中W相被显著细化且分布更加弥散,高角晶界(晶界错配角≥15°)比例明显增加,再结晶晶粒被细化。工具转速的增加使超塑性变形的最佳应变速率和延伸率均显著增加,1600 r/min工具转速的FSP样品在1×10-2 s-1的高应变速率和450 ℃的变形温度下,获得了1200%的最大延伸率。通过对超塑性变形数据进行分析和超塑性样品表面形貌观察可以得出,不同转速下所获得的FSP样品超塑性变形控制机制均以晶界滑移为主。随着工具转速的增加,超塑性动力学被明显加速,在1600 r/min工具转速的FSP样品的超塑性动力学与晶界滑移控制的细晶镁合金超塑性本构方程吻合。

关键词 搅拌摩擦加工镁合金超塑性晶界    
Abstract

Compared to conventional Mg-Al and Mg-Zn system magnesium alloys, the Mg-Zn-Y-Zr heat-resistant alloy exhibits high thermal stability due to the addition of Y earth element, which is an ideal candidate for producing high strain rate superplasticity (HSRS, strain rate≥1×10-2 s-1). Recently, the HSRS of Mg-Zn-Y-Zr alloy was achieved by friction stir processing (FSP), because the FSP resulted in the generation of fine and equiaxed recrystallized grains and fine and homogeneous second phase particles. However, the study on superplastic deformation mechanism of FSP Mg-Zn-Y-Zr alloy at various parameters is limited relatively. Therefore, at the present work, six millimeters thick as-extruded Mg-Zn-Y-Zr plates were subjected to FSP at relatively wide heat input range of rotation rates of 800 r/min to 1600 r/min with a constant traverse speed of 100 mm/min, obtaining FSP samples consisting of homogeneous, fine and equiaxed dynamically recrystallized grains and fine and uniform Mg-Zn-Y ternary phase (W-phase) particles. With increasing rotation rate, within the FSP samples the W-phase particles were broken up and dispersed significantly and the recrystallized grains were refined slightly, while the fraction ratio of the high angle grain boundaries (grain boundaries misorientation angle≥15°) was increased obviously. Increasing rotation rate resulted in an increase in both optimum strain rate and superplastic elongation. For the FSP sample obtained at 1600 r/min, a maximum elongation of 1200% was achieved at a high-strain rate of 1×10-2 s-1 and 450 ℃. Grain boundary sliding was identified to be the primary deformation mechanism in the FSP samples at various rotation rates by superplastic data analyses and surfacial morphology observations. Furthermore, the increase in rotation rate accelerated superplastic deformation kinetics remarkably. For the FSP sample at 1600 r/min, superplastic deformation kinetics is in good agreement with the prediction by the superplastic constitutive equation for fine-grained magnesium alloys governed by grain boundary sliding mechanism.

Key wordsfriction stir processing    magnesium alloy    superplasticity    grain boundary
收稿日期: 2018-05-02     
ZTFLH:  TG456.9  
基金资助:国家自然科学基金项目Nos.51774085和51671190,中央高校基本科研业务费项目No.N170704013
作者简介:

作者简介 谢广明,男,1980年生,副教授,博士

图1  Mg-Zn-Y-Zr合金母材和不同工具转速下搅拌摩擦加工(FSP)样品的OM像
图2  Mg-Zn-Y-Zr合金母材与不同转速下FSP样品的SEM像
图3  Mg-Zn-Y-Zr合金母材和转速为1600 r/min的FSP样品中Mg、Zn、Y元素的EPMA面分布
图4  Mg-Zn-Y-Zr合金母材和转速为1600 r/min的FSP样品的XRD谱
图5  Mg-Zn-Y-Zr母材和不同转速下FSP样品的EBSD取向图
图6  Mg-Zn-Y-Zr母材和不同转速下FSP样品的晶界错配角分布图
图7  不同转速FSP样品在不同变形温度下的初始应变速率与延伸率之间的关系
图8  不同转速FSP样品在不同温度下初始应变速率与流变应力的关系
图9  不同转速下FSP样品超塑性测试的拉断样品形貌
图10  不同转速下FSP样品在超塑性变形后的表面SEM像
图11  ε˙kTd3D0-1G-1b-4与σG-1之间的关系
[1] Polmear I J.Light Alloys: Metallurgy of the Light Metals[M]. 3rd Ed., London: Butterworth-Heinemann, 1995: 1
[2] Avedesian M M, Baker H.Magnesium and Magnesium Alloys[M]. 2nd Ed., Ohio: ASM International, 1999: 1
[3] Watanabe H, Mukai T, Kohzu M, et al.Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 magnesium alloy[J]. Acta Mater., 1999, 47: 3753
[4] Watanabe H, Mukai T, Ishikawa K, et al.Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion[J]. Scr. Mater., 2002, 46: 851
[5] Al-Samman T.Modification of texture and microstructure of magnesium alloy extrusions by particle-stimulated recrystallization[J]. Mater. Sci. Eng., 2013, A560: 561
[6] Hantzsche K, Bohlen J, Wendt J, et al.Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets[J]. Scr. Mater., 2010, 63: 725
[7] Hou X L, Zhai Y X, Zhang P, et al.Rare earth texture analysis of rectangular extruded Mg alloys and a comparison of different alloying adding ways[J]. Rare Met., 2016, 35: 850
[8] Xie G M, Ma Z Y, Geng L, et al.Microstructural evolution and mechanical properties of friction stir welded Mg-Zn-Y-Zr alloy[J]. Mater. Sci. Eng., 2007, A471: 63
[9] Zheng M Y, Xu S W, Wu K, et al.Superplasticity of Mg-Zn-Y alloy containing quasicrystal phase processed by equal channel angular pressing[J]. Mater. Lett., 2007, 61: 4406
[10] Bae D H, Kim Y, Kim I J.Thermally stable quasicrystalline phase in a superplastic Mg-Zn-Y-Zr alloy[J]. Mater. Lett., 2006, 60: 2190
[11] Tang W N, Chen R S, Han E H.Superplastic behaviors of Mg-Zn-Y-Zr alloy processed by extrusion and equal channel angular extrusion[J]. J. Alloys Compd., 2009, 477: 636
[12] Xu S W, Zheng M Y, Kamado S, et al.The microstructural evolution and superplastic behavior at low temperatures of Mg-5.00Zn-0.92Y-0.16Zr (wt.%) alloys after hot extrusion and ECAP process[J]. Mater. Sci. Eng., 2012, A549: 60
[13] Mishra R S, Ma Z Y.Friction stir welding and processing[J]. Mater. Sci. Eng., 2005, R50: 1
[14] Padhy G K, Wu C S, Gao S.Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: A review[J]. J. Mater. Sci. Technol., 2018, 34: 1
[15] Chen Y C, Liu H J, Feng J C.Friction stir welding characteristics of different heat-treated-state 2219 aluminum alloy plates[J]. Mater. Sci. Eng., 2006, A420: 21
[16] Yang C, Wang J J, Ma Z Y, et al.Friction stir welding and low-temperature superplasticity of 7B04 Al sheet[J]. Acta Metall. Sin., 2015, 51: 1449(杨超, 王继杰, 马宗义等. 7B04铝合金薄板的搅拌摩擦焊接及接头低温超塑性研究[J]. 金属学报, 2015, 51: 1449)
[17] Ma Z Y, Liu F C, Mishra R S.Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction stir processing[J]. Acta Mater., 2010, 58: 4693
[18] Wang K, Liu F C, Xue P, et al.Superplastic constitutive equation including percentage of high-angle grain boundaries as a microstructural parameter[J]. Metall. Mater. Trans., 2016, 47A: 546
[19] Ma Z Y, Mishra R S.Friction Stir Superplasticity for Unitized Structures[M]. Waltham: Elsevier, 2014: 1
[20] Yang Q, Feng A H, Xiao B L, et al.Influence of texture on superplastic behavior of friction stir processed ZK60 magnesium alloy[J]. Mater. Sci. Eng., 2012, A556: 671
[21] Chai F, Zhang D T, Li Y Y, et al.High strain rate superplasticity of a fine-grained AZ91 magnesium alloy prepared by submerged friction stir processing[J]. Mater. Sci. Eng., 2013, A568: 40
[22] Zhang D T, Wang S X, Qiu C, et al.Superplastic tensile behavior of a fine-grained AZ91 magnesium alloy prepared by friction stir processing[J]. Mater. Sci. Eng., 2012, A556: 100
[23] Xie G M, Luo Z A, Ma Z Y, et al.Superplastic behavior of friction stir processed Zk60 magnesium alloy[J]. Mater. Trans., 2011, 52: 2278
[24] Xie G M, Ma Z Y, Geng L, et al.Microstructural evolution and enhanced superplasticity in friction stir processed Mg-Zn-Y-Zr alloy[J]. J. Mater. Res., 2008, 23: 1207
[25] Yang Q, Xiao B L, Ma Z Y, et al.Achieving high strain rate superplasticity in Mg-Zn-Y-Zr alloy produced by friction stir processing[J]. Scr. Mater., 2011, 65: 335
[26] Yang J, Wang D, Xiao B L, et al.Effects of rotation rates on microstructure, mechanical properties, and fracture behavior of friction stir-welded (FSW) AZ31 magnesium alloy[J]. Metall. Mater. Trans., 2013, 44A: 517
[27] Xie G M, Ma Z Y, Geng L.Effects of friction stir welding parameters on microstructures and mechanical properties of ZK60 magnesium alloy joints[J]. Acta Metall. Sin., 2008, 44: 665(谢广明, 马宗义, 耿林. 搅拌摩擦焊接参数对ZK60镁合金接头微观组织和力学性能的影响[J]. 金属学报, 2008, 44: 665)
[28] Feng A H, Ma Z Y.Microstructural evolution of cast Mg-Al-Zn during friction stir processing and subsequent aging[J]. Acta Mater., 2009, 57: 4248
[29] Kim W J, Park J D, Kim W Y.Effect of differential speed rolling on microstructure and mechanical properties of an AZ91 magnesium alloy[J]. J. Alloys Compd., 2008, 460: 289
[30] Langdon T G.A unified approach to grain boundary sliding in creep and superplasticity[J]. Acta Metall. Mater., 1994, 42: 2437
[31] Ma Z Y, Mishra R S, Mahoney M W.Superplastic deformation behaviour of friction stir processed 7075Al alloy[J]. Acta Mater., 2002, 50: 4419
[32] Ball E A, Pangnell P B.Tensile-compressive yield asymmetries in high strength wrought magnesium alloys[J]. Scr. Metall. Mater., 1994, 31: 111
[33] Abbasi M, Nelson T W, Sorensen C D.Transformation and deformation texture study in friction stir processed API X80 pipeline steel[J]. Metall. Mater. Trans., 2012, 43A: 4940
[34] Mironov S, Sato Y S, Kokawa H, et al.Structural response of superaustenitic stainless steel to friction stir welding[J]. Acta Mater., 2011, 59: 5472
[35] Sastry D H, Prasad Y V R K, Vasu K I. On the stacking fault energies of some close-packed hexagonal metals[J]. Scr. Metall., 1969, 3: 927
[36] Woo W, Choo H, Brown D W, et al.Texture variation and its influence on the tensile behavior of a friction-stir processed magnesium alloy[J]. Scr. Mater., 2006, 54: 1859
[37] Agnew S R, Yoo M H, Tome C N.Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[J]. Acta Mater., 2001, 49: 4277
[38] Watanabe H, Hosokawa H, Mukai T, et al.The processing and properties of superplastic magnesium alloys and their composites[J]. Mater. Jpn., 2000, 39: 347
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[4] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[5] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[6] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[7] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[8] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[9] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[10] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[11] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[12] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[13] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[14] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[15] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.