Please wait a minute...
金属学报  2018, Vol. 54 Issue (5): 669-681    DOI: 10.11900/0412.1961.2017.00541
  金属材料的凝固专刊 本期目录 | 过刊浏览 |
受控凝固及其应用研究进展
陈光1(), 郑功1, 祁志祥1, 张锦鹏1, 李沛1, 成家林2, 张中武3
1 南京理工大学先进金属与金属间化合物材料技术工业和信息化部重点实验室、材料评价与设计教育部工程研究中心 南京 210094
2 南京工程学院材料工程学院 南京 211167
3 哈尔滨工程大学超轻材料与表面技术教育部重点实验室 哈尔滨 150001
Research Progress on Controlled Solidificationand Its Applications
Guang CHEN1(), Gong ZHENG1, Zhixiang QI1, Jinpeng ZHANG1, Pei LI1, Jialin CHENG2, Zhongwu ZHANG3
1 Engineering Research Center of Materials Behavior and Design, Ministry of Education, MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology,Nanjing University of Science and Technology, Nanjing 210094, China
2 School of Materials Engineering, Nanjing Institute of Technology, Nanjing 211167, China
3 Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China
全文: PDF(14927 KB)   HTML
摘要: 

本文对作者所在课题组近20年来开展的受控凝固研究与应用工作进行了综述,主要包括凝固前母相的熔体热处理、液/固两相区的半固态处理、非平衡材料的快冷顺序凝固、半固态快冷顺序凝固等,以及将受控凝固扩展到固态相变阶段的定向热处理、定向凝固与定向固态相变相结合的“双控”材料制备新技术等。同时,展望了受控凝固技术及其应用今后的发展方向。

关键词 受控凝固熔体热处理半固态快冷顺序凝固定向凝固定向热处理    
Abstract

This paper reviews the study of our group on controlled solidification and its applications in recent 20 years, including melt heat treatment before solidification, semi-solid processing between liquidus and solidus, rapid progressive solidification of nonequilibrium materials, semi-solid progressive solidification, and directional heat treatment in solid phase transformation. Furthermore, a new technique of material preparation is proposed with the combination of directional solidification and directional heat treatment. In addition, an outlook of controlled solidification technology and its applications are provided.

Key wordscontrolled solidification    melt heat treatment    semi-solid progressive solidification    directional solidification    directional heat treatment
收稿日期: 2017-12-20     
ZTFLH:  TG244  
基金资助:资助项目 国家自然科学基金项目Nos.51731006、51771093和51571117,中国博士后科学基金项目No.2017M620212,博士后创新人才支持计划项目No.BX201700120
作者简介:

作者简介 陈 光,男,1962年生,教授

引用本文:

陈光, 郑功, 祁志祥, 张锦鹏, 李沛, 成家林, 张中武. 受控凝固及其应用研究进展[J]. 金属学报, 2018, 54(5): 669-681.
Guang CHEN, Gong ZHENG, Zhixiang QI, Jinpeng ZHANG, Pei LI, Jialin CHENG, Zhongwu ZHANG. Research Progress on Controlled Solidificationand Its Applications. Acta Metall Sin, 2018, 54(5): 669-681.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00541      或      https://www.ams.org.cn/CN/Y2018/V54/I5/669

图1  熔体过热温度对定向凝固镍基高温合金液/固界面影响规律[17]
图2  熔体热处理循环次数对Ti-48Al-2Cr-2Nb合金宏观组织的影响[23]
图3  半固态处理制备金属玻璃复合材料的组织和室温压缩应力-应变曲线[24]
图4  Zr-块体金属玻璃(BMG)复合材料850 ℃保温不同时间的显微组织[30]
图5  等效直径Deq、平均形状因子SF和比表面积的倒数Sv-1随保温时间变化曲线[30]
图6  铜模铸造和快冷顺序凝固制备的Mg-BMG复合材料的显微组织[32]
图7  抽拉速率对快冷顺序凝固Zr-BMG复合材料组织和性能的影响[34]
图8  普通渗流铸造和快冷顺序凝固制备的Wf/Zr-BMG复合材料
图9  半固态快冷顺序凝固(SSPS)技术制备的11 mm直径Zr-BMG复合材料的宏观形貌及表面、心部的显微组织[34,35]
图10  SSPS技术制备的Zr-BMG复合材料室温拉伸工程应力-应变曲线[35]
图11  热区温度为900 ℃时不同抽拉速率下定向热处理后纯Fe的显微组织[77]
图12  不同初生相TiAl合金片层取向和晶体取向之间的关系[87]
图13  平行取向全片层TiAl合金定向组织示意图
[1] Kermanpur A, Varahraam N, Engilehei E, et al.Directional solidification of Ni base superalloy IN738LC to improve creep properties[J]. Mater. Sci. Technol., 2000, 16: 579
[2] Versnyder F I, Shank M E.The development of columnar grain and single crystal high temperature materials through directional solidification[J]. Mater. Sci. Eng., 1970, 6: 213
[3] Versnyder F L, Barlow R B, Sink L W, et al.Directional solidification in the precision casting of gas-turbine parts[J]. Modern Cast, 1967, 52: 68
[4] Erickson J S, Owczarski W A, Curran P W.Process speeds up directional solidification[J]. Met. Prog., 1971, 99: 58
[5] Giamei A F, Tschinkel J G.Liquid metal cooling: A new solidification technique[J]. Metall. Trans., 1976, 7A: 1427
[6] Chen G, Li J G, Fu H Z.Advanced unidirectional solidification processing[J]. Mater. Rev., 1999, 13(5): 5(陈光, 李建国, 傅恒志. 先进定向凝固技术[J]. 材料导报, 1999, 13(5): 5)
[7] Lux B, Haour G, Mollard F.Dynamic undercooling of superalloys[J]. Metall, 1981, 35: 1235
[8] Li J S.On electromagnetic shaping directional solidification of stainless steel [D]. Xi'an: Northwestern Polytechnical University, 1998(李金山. 钢的电磁约束成形定向凝固研究 [D]. 西安: 西北工业大学, 1998)
[9] Gill S C, Zimmermann M, Kurz W.Laser resolidification of the Al-Al2Cu eutectic: The coupled zone[J]. Acta Metall. Mater., 1992, 40: 2895
[10] Koohpayeh S M, Fort D, Abell J S.The optical floating zone technique: A review of experimental procedures with special reference to oxides[J]. Prog. Cryst. Growth Charact. Mater., 2008, 54: 121
[11] Su Y Q, Guo J Z, Liu C, et al.Progress in theory and technology on directional solidification[J]. Spec. Cast. Nonferrous Alloys, 2006, 26: 25(苏彦庆, 郭景哲, 刘畅等. 定向凝固技术与理论研究的进展[J]. 特种铸造及有色合金, 2006, 26: 25)
[12] Chen G, Fu H Z.Advanced Materials Fabricated by Nonequilibrium Solidification [M]. Beijing: Science Press, 2004: 14(陈光, 傅恒志. 非平衡凝固新型金属材料 [M]. 北京: 科学出版社, 2004: 14)
[13] Вертман А А, Самарин А М. Методы исследования свойств металлических расплавов [М]. Москва: Наука, 1969: 197
[14] Chen G, Cai Y W, Li J G, et al.Research and application of melt heat treatment[J]. J. Hebei Univ. Sci. Technol., 1998, 19(1): 6(陈光, 蔡英文, 李建国等. 熔体热处理研究及其应用[J]. 河北科技大学学报, 1998, 19(1): 6)
[15] Chen G, Yu J W, Sun Y C, et al.Influence of melt thermal history on the unidirectional solidification interface stability of Al-4.65% Cu alloy[J]. Chin. J. Mater. Res., 1999, 13: 497(陈光, 俞建威, 孙彦臣等. 熔体热历史对Al-Cu合金定向凝固界面稳定性的影响[J]. 材料研究学报, 1999, 13: 497)
[16] Chen G, Yu J W, Fu H Z.Influence of the melt heat history on the solid/liquid interface morphology evolution in unidirectional solidification[J]. J. Mater. Sci. Lett., 1999, 18: 1571
[17] Chen G, Yu J W, Xie F Q, et al.Influence of melt superheat history on morphology of unidirectional directionally solidified solid/liquid interface in nickel-base superalloys[J]. Acta Metall. Sin., 2001, 37: 488(陈光, 俞建威, 谢发勤等. 熔体过热历史对Ni基高温合金定向凝固界面形态的影响[J]. 金属学报, 2001, 37: 488)
[18] Geng X G, Chen G, Fu H Z.The effect of melt superheat on interface morphological stability during directional solidification[J]. Acta Metall. Sin., 2002, 38: 225(耿兴国, 陈光, 傅恒志. 熔体过热对定向凝固界面形态稳定性的影响[J]. 金属学报, 2002, 38: 225)
[19] Geng X G, Chen G, Fu H Z.Hysteresis effect on some physical properties of melt superheat[J]. Mater. Sci. Eng., 2002, 20: 549(耿兴国, 陈光, 傅恒志. 过热合金熔体的几种物性滞后效应[J]. 材料科学与工程, 2002, 20: 549)
[20] Tiller W A, Jackson K A, Rutter J W, et al.The redistribution of solute atoms during the solidification of metals[J]. Acta Metall., 1953, 1: 428
[21] Yang G, Kou H C, Yang J R, et al.Microstructure control of Ti-45Al-8.5Nb-(W, B, Y) alloy during the solidification process[J]. Acta Mater., 2016, 112: 121
[22] Yang G, Kou H C, Liu Y, et al.Response of the solidification microstructure of a high Nb containing TiAl alloy to an isothermal high-temperature heat treatment[J]. Intermetallics, 2015, 63: 1
[23] Yang G, Kou H C, Wang J, et al.Effect of melt treatment on the grain sizes of Ti-48Al-2Cr-2Nb Alloy[J]. Spec. Cast. Nonferrous Alloys, 2014, 34: 243(杨光, 寇宏超, 王军等. 熔体处理对Ti-48Al-2Cr-2Nb合金凝固组织的影响[J]. 特种铸造及有色合金, 2014, 34: 243)
[24] Sun G Y, Chen G, Liu C T, et al.Innovative processing and property improvement of metallic glass based composites[J]. Scr. Mater., 2006, 55: 375
[25] Sun G Y, Chen G, Chen G L.Comparison of microstructures and properties of Zr-based bulk metallic glass composites with dendritic and spherical bcc phase precipitates[J]. Intermetallics, 2007, 15: 632
[26] Hofmann D C, Suh J Y, Wiest A, et al.Designing metallic glass matrix composites with high toughness and tensile ductility[J]. Nature, 2008, 451: 1085
[27] Hofmann D C, Suh J Y, Wiest A, et al.Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility[J]. Proc. Natl. Acad. Sci. USA, 2008, 105: 20136
[28] Inoue A, Kong F L, Zhu S L, et al.Production methods and properties of engineering glassy alloys and composites[J]. Intermetallics, 2015, 58: 20
[29] Suryanarayana C, Inoue A.Bulk Metallic Glasses [M]. Boca Raton: CRC Press, 2010: 441
[30] Cheng J L. Chen G, Xu F, et al.Correlation of the microstructure and mechanical properties of Zr-based in-situ bulk metallic glass matrix composites[J]. Intermetallics, 2010, 18: 2425
[31] Zhang X L, Chen G, Du Y L.Synthesis of plastic Mg-based bulk metallic glass matrix composites by the Bridgman solidification[J]. Metall. Mater. Trans., 2012, 43A: 2604
[32] Zhang X L, Sun G Y. Chen G.Improving the strength and the toughness of Mg-based bulk metallic glass by Bridgman solidification[J]. Mater. Sci. Eng., 2013, A564: 158
[33] Chen G, Zhang X L, Liu C T.High strength and plastic strain of Mg-based bulk metallic glass composite containing in situ formed intermetallic phases[J]. Scr. Mater., 2013, 68: 150
[34] Cheng J L.Phase selection, oxygen and mechanical behavior of Zr based bulk metallic glass composites [D]. Nanjing: Nanjing University of Science and Technology, 2012(成家林. 锆基块体金属玻璃复合材料相选择、氧含量与力学行为研究 [D]. 南京: 南京理工大学, 2012)
[35] Chen G, Cheng J L, Liu C T.Large-sized Zr-based bulk-metallic-glass composite with enhanced tensile properties[J]. Intermetallics, 2012, 28: 25
[36] Chang K M.Tensile and impact properties of directionally solidified Fe-40Al intermetallic[J]. Metall. Mater. Trans., 1990, 21A: 3027
[37] Bei H, George E P.Microstructures and mechanical properties of a directionally solidified NiAl-Mo eutectic alloy[J]. Acta Mater., 2005, 53: 69
[38] Johnson D R, Masuda Y, Inui H, et al.Alignment of the TiAl/Ti3Al lamellar microstructure in TiAl alloys by growth from a seed material[J]. Acta Mater., 1997, 45: 2523
[39] Bewlay B P, Lipsitt H A, Jackson M R, et al. Solidification processing of high temperature intermetallic eutectic-based alloys [J]. Mater. Sci. Eng., 1995, A192-193: 534
[40] Wang Q S, Shen Y, Pan B Y, et al.Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe[J]. Nat. Mater., 2016, 15: 159
[41] Liu Y, Li Z C, Liu W P, et al.KxFe2-ySe2 single crystals: Floating-zone growth, transport and structural properties[J]. Supercond. Sci. Technol., 2012, 25: 075001
[42] Motoyama E M, Yu G, Vishik I M, et al.Spin correlations in the electron-doped high-transition-temperature superconductor Nd2-xCexCuO4±δ[J]. Nature, 2007, 445: 186
[43] Jang D H, Lee W J, Sohn E, et al.Single crystal growth and optical properties of a transparent perovskite oxide LaInO3[J]. J. Appl. Phys., 2017, 121: 125109
[44] Phelan W A, Koohpayeh S M, Cottingham P, et al.On the chemistry and physical properties of flux and floating zone grown SmB6 single crystals[J]. Sci. Rep., 2016, 6: 20860
[45] Hatnean M C, Lees M R, Paul D M K, et al . Large, high quality single-crystals of the new Topological Kondo Insulator, SmB6[J]. Sci. Rep., 2013, 3: 3071
[46] Jain A, Krautloher M, Porras J, et al.Higgs mode and its decay in a two dimensional antiferromagnet[J]. Nat. Phys., 2017, 13: 633
[47] Sutter D, Fatuzzo C G, Moser S, et al.Hallmarks of Hunds coupling in the Mott insulator Ca2RuO4[J]. Nat. Commun., 2017, 8: 15176
[48] Cao S X, Zhao H Z, Kang B J, et al.Temperature induced spin switching in SmFeO3 single crystal[J]. Sci. Rep., 2014, 4: 5960
[49] Shen Y, Li Y D, Wo H L, et al.Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate[J]. Nature, 2016, 540: 559
[50] Ren Y, Palstra T T M, Khomskii D I, et al. Temperature-induced magnetization reversal in a YVO3 single crystal[J]. Nature, 1998, 396: 441
[51] Oh Y S, Luo X, Huang F T, et al.Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca, Sr)3Ti2O7 crystals[J]. Nat. Mater., 2015, 14: 407
[52] Viskadourakis Z, Sunku S S, Mukherjee S, et al.Ferroelectricity in underdoped La-based cuprates[J]. Sci. Rep., 2015, 5: 15268
[53] Baloch M M, Bhadeshia H K D H. Directional recrystallization in Inconel MA 6000 nickel base oxide dispersion strengthened superalloy[J]. Mater. Sci. Technol., 1990, 6: 1236
[54] Da C Andrade E N. Preparation of single crystal wires of metals of high melting point[J]. Proc. R. Soc.: Mathemat., Phys. Eng. Sci., 1937, 163A: 16
[55] Chou T S, Bhadeshia H K D H. Recrystallization temperatures in mechanically alloyed oxide-dispersion-strengthened MA956 and MA957 steels[J]. Mater. Sci. Eng., 1994, A189: 229
[56] Miodownik M A, Wilkinson A J, Martin J W.On the secondary recrystallisation of MA754[J]. Acta Mater., 1998, 46: 2809
[57] Sha W, Bhadeshia H K D H. Modelling of recrystallisation in mechanically alloyed materials[J]. Mater. Sci. Eng., 1997, A233: 91
[58] Baker I, Li J.Directional annealing of cold-rolled copper single crystals[J]. Acta Mater., 2002, 50: 805
[59] Li J, Baker I.An EBSP study of directionally recrystallized cold-rolled nickel[J]. Mater. Sci. Eng., 2005, A392: 8
[60] Li J, Johns S L, Iliescu B M, et al.The effect of hot zone velocity and temperature gradient on the directional recrystallization of polycrystalline nickel[J]. Acta Mater., 2002, 50: 4491
[61] Humphreys F J.A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—I. The basic model[J]. Acta Mater., 1997, 45: 4231
[62] Greaves M S, Base P S, Roberts W T, et al.Directional recrystallization in nickel based high temperature alloy[J]. Mater. Sci. Technol., 1996, 12: 730
[63] Bhadeshia H K D H. Recrystallisation of practical mechanically alloyed iron-based and nickel-base superalloys[J]. Mater. Sci. Eng., 1997, A223: 64
[64] Evens P J, Martin J W, Little E A.Secondary recrystallization of MA957 oxide dispersion strengthened by ferritic superalloy[J]. Mater. Sci. Technol., 1992, 8: 531
[65] Godfrey A W, Martin J W.The effect of directional recrystallization on the low cycle fatigue response of a powder metallurgy nickel-based superalloy at elevated temperatures[J]. Mater. Sci. Eng., 1997, A222: 91
[66] Duhl D N, Thompson R R.Directional structures for advanced aircraft turbine blades[J]. J. Aircraft., 1977, 14: 521
[67] Cairns R L, Curwick L R, Benjamin J S.Grain growth in dispersion strengthened superalloys by moving zone heat treatments[J]. Metall. Trans., 1975, 6A: 179
[68] Gessinger E H.Mechanical alloying of In-738[J]. Metall. Trans., 1976, 7A: 1203
[69] Gater C A, Martin J W.Grain reorientation during zone annealing of MA6000[J]. Mater. Sci. Technol., 1996, 12: 613
[70] Miodownik M A, Martin J W, Little E A.Secondary recrystallization of two oxide dispersion strengthened ferritic superalloys: MA 956 and MA 957[J]. Mater. Sci. Technol., 1994, 10: 102
[71] Sha W, Bhadeshia H K D H. Directional recrystallization in mechanically alloyed oxide dispersion-strengthened metals by annealing in a moving temperature gradient[J]. J. Mater. Sci., 1995, 30: 1439
[72] Marsh J M. Martin J W.Micromechanisms of texture development during zone annealing of MA 6000 extrusions[J]. Mater. Sci. Technol., 1991, 7: 183
[73] Mujahid M, Martin J W.The effect of oxide particle coherency on Zener pinning in ODS superalloys[J]. J. Mater. Sci., 1994, 13: 153
[74] Capdevila C, Chen Y L, Jones A R, et al.Grain boundary mobility in Fe-base oxide dispersion strengthened PM2000 alloy[J]. ISI Int., 2003, 43: 777
[75] Watanabe T, Fujii H, Oikawa H, et al.Grain boundaries in rapidly solidified and annealed Fe-6.5 mass% Si polycrystalline ribbons with high ductility[J]. Acta Metall., 1989, 37: 941
[76] Tsujimoto T, Matsui T, Suzuki T, et al.Evolution of high aspect ratio grains in a TiAl-based alloy by directional grain growth[J]. Intermetallics, 2001, 9: 97
[77] Zhang Z W, Chen G, Chen G L.Dynamics and mechanism of columnar grain growth of pure iron under directional annealing[J]. Acta Mater., 2007, 55: 5988
[78] Zhang Z W, Chen G L, Chen G.Microstructural evolution of commercial pure iron during directional annealing[J]. Mater. Sci. Eng., 2006, A422: 241
[79] Zhang Z W, Chen G L, Chen G.The effect of drawing velocity and phase transformation on the structure of directionally annealed iron[J]. Mater. Sci. Eng., 2006, A434: 58
[80] Zhang Z W, Chen G L, Chen G. The effect of crystallographic texture on columnar grain growth in commercial pure iron during directional annealing [J]. Mater. Sci. Eng., 2006, A435-436: 573
[81] Ruo Z R, Liu Y, Deng Q Q, et al.Phase field study of the formation of columnar-grain structure during directional annealing[J]. Guangxi Phys., 2013, 34(1): 9(罗志荣, 刘瑶, 邓芊芊等. 相场方法研究定向退火条件下柱状晶粒的形成过程[J]. 广西物理, 2013, 34(1): 9)
[82] Ruo Z R, Gao Y J, Deng Q Q, et al.Phase field simulation of formation and continuous propagation of columnar grain structure during directional annealing[J]. Chin. J. Nonferrous Met., 2014, 24: 1778(罗志荣, 高英俊, 邓芊芊等. 定向退火条件下柱状晶形成及连续扩展的相场模拟[J]. 中国有色金属学报, 2014, 24: 1778)
[83] Zhang Z W, Chen G, Bei H B, et al.Directional recrystallization and microstructures of an Fe-6.5wt%Si alloy[J]. J. Mater. Res., 2009, 24: 2654
[84] Zhang Z W, Chen G, Bei H, et al.Improvement of magnetic properties of Fe-6.5wt%Si by directional recrystallization[J]. Appl. Phys. Lett., 2008, 93: 191908
[85] Bertram A, Olschewski J.Anisotropic creep modelling of the single crystal superalloy SRR99[J]. Comput. Mater. Sci., 1996, 5: 12
[86] Burgers W G.On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium[J]. Physica, 1934, 1: 561
[87] Chen G, Peng Y B, Zheng G, et al.Polysynthetic twinned TiAl single crystals for high-temperature applications[J]. Nat. Mater., 2016, 15: 876
[88] Bewlay B P, Weimer M, Kelley T, et al.The science, technology, and implementation of TiAl alloys in commercial aircraft engines [A]. Materials Research Society Symposium Proceedings [C]. Pittsburgh: Materials Research Society Press, 2013: 49
[89] Pollock T M.Alloy design for aircraft engines[J]. Nat. Mater., 2016, 15: 809
[90] Inui H, Oh M H, Nakamura A, et al.Room-temperature tensile deformation of polysynthetically twinned (PST) crystals of TiAl[J]. Acta Metall. Mater., 1992, 40: 3095
[91] Yamaguchi M, Inui H, Ito K.High-temperature structural intermetallics[J]. Acta Mater., 2000, 48: 307
[92] Kim M C, Oh M H, Lee J H, et al. Composition and growth rate effects in directionally solidified TiAl alloys [J]. Mater. Sci. Eng., 1997, A239-240: 570
[93] Jung I S, Kim M C, Lee J H, et al.High temperature phase equilibria near Ti-50 at% Al composition in Ti-Al system studied by directional solidification[J]. Intermetallics, 1999, 7: 1247
[94] Jung I S, Jang H S, Oh M H, et al. Microstructure control of TiAl alloys containing β stabilizers by directional solidification [J]. Mater. Sci. Eng., 2002, A329-331: 13
[95] Lapin J, Gabalcová Z, Pelachová T.Effect of Y2O3 crucible on contamination of directionally solidified intermetallic Ti-46Al-8Nb alloy[J]. Intermetallics, 2011, 19: 396
[96] Lapin J, Ondrú? L, Nazmy M.Directional solidification of intermetallic Ti-46Al-2W-0.5 Si alloy in alumina moulds[J]. Intermetallics, 2002, 10: 1019
[97] Lapin J, Gabalcová Z.Solidification behaviour of TiAl-based alloys studied by directional solidification technique[J]. Intermetallics, 2011, 19: 797
[98] Schütze M.High-temperature alloys: Single-crystal performance boost[J]. Nat. Mater., 2016, 15: 823
[1] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[2] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[3] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[4] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[5] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[6] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[7] 侯渊, 任忠鸣, 王江, 张振强, 李霞. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响[J]. 金属学报, 2018, 54(5): 801-808.
[8] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[9] 王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.
[10] 刘林, 孙德建, 黄太文, 张琰斌, 李亚峰, 张军, 傅恒志. 高梯度定向凝固技术及其在高温合金制备中的应用[J]. 金属学报, 2018, 54(5): 615-626.
[11] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[12] 苏彦庆, 刘桐, 李新中, 陈瑞润, 郭景杰, 傅恒志. 籽晶法定向凝固TiAl基合金片层取向控制[J]. 金属学报, 2018, 54(5): 647-656.
[13] 李言祥, 刘效邦. 定向凝固多孔金属研究进展[J]. 金属学报, 2018, 54(5): 727-741.
[14] 张洪伟,秦学智,李小武,周兰章. 一种高硼定向凝固合金的初熔行为及其对力学性能的影响[J]. 金属学报, 2017, 53(6): 684-694.
[15] 马德新, 王富, 温序晖, 孙德建, 刘林. CM247LC单晶高温合金中MC碳化物对γ/γ′共晶反应的影响[J]. 金属学报, 2017, 53(12): 1603-1610.