|
|
定向凝固晶粒竞争生长的研究进展 |
王锦程( ), 郭春文, 李俊杰, 王志军 |
西北工业大学凝固技术国家重点实验室 西安 710072 |
|
Recent Progresses in Competitive Grain Growth During Directional Solidification |
Jincheng WANG( ), Chunwen GUO, Junjie LI, Zhijun WANG |
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China |
引用本文:
王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.
Jincheng WANG,
Chunwen GUO,
Junjie LI,
Zhijun WANG.
Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. Acta Metall Sin, 2018, 54(5): 657-668.
[1] | Fu H Z, Guo J J, Liu L, et al.Directional Solidification and Processing of Advanced Materials [M]. Beijing: Science Press, 2009: 1(傅恒志, 郭景杰, 刘林等. 先进材料定向凝固 [M]. 北京: 科学出版社, 2009: 1) | [2] | Fu H Z, He G, Li J G.Observation of competitive growth in a directionally solidified nickel base single crystal superalloy[J]. Acta Metall. Sin., 1997, 33: 1233(傅恒志, 何国, 李建国. 单晶高温合金定向凝固过程中晶体竞争生长观察[J]. 金属学报, 1997, 33: 1233) | [3] | Hu Z Q, Liu L R, Jin T.Development of the Ni-base single crystal superalloys[J]. Aeroengine, 2005, 31: 1(胡壮麒, 刘丽荣, 金涛. 镍基单晶高温合金的发展[J]. 航空发动机, 2005, 31: 1) | [4] | D'Souza N, Jennings P A, Yang X L, et al. Seeding of single-crystal superalloys—Role of constitutional undercooling and primary dendrite orientation on stray-grain nucleation and growth[J]. Metall. Mater. Transact., 2005, 36B: 657 | [5] | Yan Y H, Liu J W, Jia Z H, et al.Simulation and experimental studies on grain selection behavior of DD5 single crystal superalloy[J]. Mater. Sci. Forum, 2017, 878: 42 | [6] | Zhang H, Xu Q Y, Sun C B, et al.Simulation and experimental studied on grain selection behavior of single crystal superalloy: I. Starter block[J]. Acta Metall. Sin., 2013, 49: 1508(张航, 许庆彦, 孙长波等. 单晶高温合金螺旋选晶过程的数值模拟与实验研究I.引晶段[J]. 金属学报, 2013, 49: 1508) | [7] | Zhang H, Xu Q Y, Sun C B, et al.Simulation and experimental studies on grain selection behavior of single crystal superalloy: II. Spiral part[J]. Acta Metall. Sin., 2013, 49: 1521(张航, 许庆彦, 孙长波等. 单晶高温合金螺旋选晶过程的数值模拟与实验研究II.螺旋段[J]. 金属学报, 2013, 49: 1521) | [8] | Gao S F, Liu L, Wang N, et al.EBSD studies of grain evolution and grain selection behavior during the preparation of Ni-based single crystal superalloy DD3[J]. Acta Metall. Sin., 2011, 47: 1251(高斯峰, 刘林, 王柠等. 镍基单晶高温合金DD3制备过程中晶粒演化和选晶行为的EBSD研究[J]. 金属学报, 2011, 47: 1251) | [9] | Wang N, Liu L, Gao S F, et al.Simulation of grain selection during single crystal casting of a Ni-base superalloy[J]. J. Alloys Compd., 2014, 586: 220 | [10] | Yang X L, Dong H B, Wang W, et al.Microscale simulation of stray grain formation in investment cast turbine blades[J]. Mater. Sci. Eng., 2004, A386: 129 | [11] | Zhang X L, Zhou Y Z, Jin T, et al.Study on the tendency of stray grain formation of Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2012, 48: 1229(张小丽, 周亦胄, 金涛等. 镍基单晶高温合金杂晶形成倾向性的研究[J]. 金属学报, 2012, 48: 1229) | [12] | Yang X L, Ness D, Lee P D, et al. Simulation of stray grain formation during single crystal seed melt-back and initial withdrawal in the Ni-base superalloy CMSX4 [J]. Mater. Sci. Eng., 2005, A413-414: 571 | [13] | Trempa M, Reimann C, Friedrich J, et al.Mono-crystalline growth in directional solidification of silicon with different orientation and splitting of seed crystals[J]. J. Cryst. Growth, 2012, 351: 131 | [14] | Deng P R, Li J G.Orientation control of crystal growth for TbFe1.9 alloy in a magnetic field[J]. Rare Met. Mater. Eng., 2006, 35: 1311(邓沛然, 李建国. 磁场中TbFe1.9晶体生长的取向控制[J]. 稀有金属材料与工程, 2006, 35: 1311) | [15] | Stanford N, Djakovic A, Shollock B, et al.Defect grains in the melt-back region of cmsx-4 single crystal seeds [A]. Proceedings of the 10th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2004: 719 | [16] | Meng X B, Li J G, Chen Z Q, et al.Effect of platform dimension on the dendrite growth and stray grain formation in a Ni-base single-crystal superalloy[J]. Metall. Mater. Trans., 2013, 44A: 1955 | [17] | Yang C, Liu L, Zhao X, et al.Formation of stray grains during directional solidification of a superalloy AM3[J]. Appl. Phys., 2014, 114A: 979 | [18] | Bogdanowicz W, Albrecht R, Sieniawski J, et al.The subgrain structure in turbine blade roots of CMSX-4 superalloy[J]. J. Cryst. Growth, 2014, 401: 418 | [19] | Walton D, Chalmers B.The origin of the preferred orientation in the columnar zone of ingots[J]. Trans. Am. Inst. Min. Metall. Eng., 1959, 215: 447 | [20] | Rappaz M, Gandin C A.Modelling of microstructure formation in solidification processes[J]. Acta Metall. Mater., 1993, 41: 345 | [21] | Gandin C A, Rappaz M.A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes[J]. Acta Metall. Mater., 1994, 42: 2233 | [22] | Li J J, Wang Z J, Wang Y Q, et al.Phase-field study of competitive dendritic growth of converging grains during directional solidification[J]. Acta Mater., 2012, 60: 1478 | [23] | Esaka H.Dendrite growth and spacing in succinonitrile-acetone alloys [D]. Lausanne, Switzerland: EPFL, 1986 | [24] | D'Souza N, Ardakani M G, Wagner A, et al. Morphological aspects of competitive grain growth during directional solidification of a nickel-base superalloy, CMSX4[J]. J. Mater. Sci., 2002, 37: 481 | [25] | Wagner A, Shollock B A, McLean M. Grain structure development in directional solidification of nickel-base superalloys[J]. Mater. Sci. Eng., 2004, A374: 270 | [26] | Ardakani M G, D'Souza N, Wagner A, et al. Competitive grain growth and texture evolution during directional solidification of superalloys [A]. Superalloys 2000[C]. Warrendale, PA: TMS, 2000: 219 | [27] | He G, Li J G, Mao X M, et al.Investigation on competitive growth mechanism of crystals during unidirectional solidification[J]. J. Synth. Cryst., 1995, 24(4): 278(何国, 李建国, 毛协民等. 定向凝固晶粒宏观竞争生长机制的实验研究[J]. 人工晶体学报, 1995, 24: 278) | [28] | Liu Z Y, Lei Y, Fu H Z.A study on mechanism of misoriented grain growth in single-crystal manufacture of DD8 nickel based superalloy[J]. Acta Metall. Sin., 2000, 36: 1(刘志义, 雷毅, 傅恒志. DD8镍基高温合金单晶制备中的杂晶长大机制[J]. 金属学报, 2000, 36: 1) | [29] | Seo S M, Kim I S, Lee J H, et al.Grain structure and texture evolutions during single crystal casting of the Ni-base superalloy CMSX-4[J]. Met. Mater. Int., 2009, 15: 391 | [30] | Zhou Y Z, Volek A, Green N R.Mechanism of competitive grain growth in directional solidification of a nickel-base superalloy[J]. Acta Mater., 2008, 56: 2631 | [31] | Zhou Y Z, Green N R.Competitive grain growth in directional solidification of a nickel-base superalloy [A]. Superalloys[M]. Warrendale, PA: TMS, 2008: 317 | [32] | Zhou Y Z, Jin T, Sun X F.Structure evolution in directionally solidified bicrystals of nickel base superalloys[J]. Acta Metall. Sin., 2010, 46: 1327(周亦胄, 金涛, 孙晓峰. 双晶镍基高温合金定向凝固过程的结构演化[J]. 金属学报, 2010, 46: 1327) | [33] | Epishin A I, Nolze G.Investigation of the competitive grain growth during solidification of single crystals of nickel-based superalloys[J]. Crystallogr. Rep., 2006, 51: 710 | [34] | Zhou Y Z, Sun X F.Effect of solidification rate on competitive grain growth in directional solidification of a nickel-base superalloy[J]. Sci. China: Tech. Sci., 2012, 56: 1327 | [35] | Lu Q, Li J G, Jin T, et al.Competitive growth in bi-crystal of Ni-based superalloys during directional solidification[J]. Acta Metall. Sin., 2011, 47: 641(卢琦, 李金国, 金涛等. 镍基双晶高温合金定向凝固过程中的竞争生长[J]. 金属学报, 2011, 47: 641) | [36] | Zhao X B.Crystal orientation of single crystal superalloys under high thermal gradient directional solidification [D]. Xi'an: Northwestern Polytechnical University, 2010(赵新宝. 高梯度定向凝固单晶高温合金晶体取向研究 [D]. 西安: 西北工业大学, 2010) | [37] | Yu H L, Lin X, Li J J, et al.Research on diverged bi-crystal competitive growth in directional solidification[J]. Acta Metall. Sin., 2013, 49: 58(宇红雷, 林鑫, 李俊杰等. 定向凝固发散双晶的竞争生长研究[J]. 金属学报, 2013, 49: 58) | [38] | Yang C, Liu L, Zhao X B, et al.Competitive grain growth mechanism in three dimensions during directional solidification of a nickel-based superalloy[J]. J. Alloys Compd., 2013, 578: 577 | [39] | Yu H L, Li J J, Lin X, et al.Anomalous overgrowth of converging dendrites during directional solidification[J]. J. Cryst. Growth, 2014, 402: 210 | [40] | Liu Z Y, Lin M, Yu D E, et al.Dependence of competitive grain growth on secondary dendrite orientation during directional solidification of a Ni-based superalloy[J]. Metall. Mater. Trans., 2013, 44A: 5113 | [41] | Hu S S, Liu L, Cui Q W, et al.Converging competitive growth in bi-crystal of Ni-based superalloy during directional solidification[J]. Acta Metall. Sin., 2016, 52: 897(胡松松, 刘林, 崔强伟等. 镍基高温合金定向凝固过程中的汇聚型双晶竞争生长[J]. 金属学报, 2016, 52: 897) | [42] | Hu S S, Yang W C, Cui Q W, et al.Effect of secondary dendrite orientations on competitive growth of converging dendrites of Ni-based bi-crystal superalloys[J]. Mater. Charact., 2017, 125: 152 | [43] | Eiken J.Dendritic growth texture evolution in Mg-based alloys investigated by phase-field simulation[J]. Int. J. Cast Met. Res., 2013, 22: 86 | [44] | Chen P, Tsai Y L, Lan C W.Phase field modeling of growth competition of silicon grains[J]. Acta Mater., 2008, 56: 4114 | [45] | Wang Y Q, Wang J C, Li J J.Phase field modeling of the growth and competition behavior of tilted dendrites in directional solidification[J]. Acta Phys. Sin., 2012, 61: 118103(王雅琴, 王锦程, 李俊杰. 定向倾斜枝晶生长规律及竞争行为的相场法研究[J]. 物理学报, 2012, 61: 118103) | [46] | Meng X B, Lu Q, Zhang X L, et al.Mechanism of competitive growth during directional solidification of a nickel-base superalloy in a three-dimensional reference frame[J]. Acta Mater., 2012, 60: 3965 | [47] | Takaki T, Shimokawabe T, Ohno M, et al.Unexpected selection of growing dendrites by very-large-scale phase-field simulation[J]. J. Cryst. Growth, 2013, 382: 21 | [48] | Takaki T, Ohno M, Shimokawabe T, et al.Two-dimensional phase-field simulations of dendrite competitive growth during the directional solidification of a binary alloy bicrystal[J]. Acta Mater., 2014, 81: 272 | [49] | Takaki T, Ohno M, Shibuta Y, et al.Two-dimensional phase-field study of competitive grain growth during directional solidification of polycrystalline binary alloy[J]. J. Cryst. Growth, 2016, 442: 14 | [50] | Takaki T, Sakane S, Ohno M, et al.Large-scale phase-field studies of three-dimensional dendrite competitive growth at the converging grain boundary during directional solidification of a bicrystal binary alloy[J]. ISIJ Int., 2016, 56: 1427 | [51] | Sakane S, Takaki T, Ohno M, et al.GPU-accelerated 3D phase-field simulations of dendrite competitive growth during directional solidification of binary alloy[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2015, 84: 012063 | [52] | Tourret D, Karma A.Growth competition of columnar dendritic grains: a phase-field study[J]. Acta Mater., 2015, 82: 64 | [53] | Tourret D, Song Y, Clarke A J, et al.Grain growth competition during thin-sample directional solidification of dendritic microstructures: A phase-field study[J]. Acta Mater., 2017, 122: 220 | [54] | Guo C W, Li J J, Yu H L, et al.Branching-induced grain boundary evolution during directional solidification of columnar dendritic grains[J]. Acta Mater., 2017, 136: 148 | [55] | Viardin A, Zalo?nik M, Souhar Y, et al.Mesoscopic modeling of spacing and grain selection in columnar dendritic solidification: Envelope versus phase-field model[J]. Acta Mater., 2017, 122: 386 | [56] | Pieters R, Langer J S.Noise-driven sidebranching in the boundary-layer model of dendritic solidification[J]. Phys. Rev. Lett., 1986, 56: 1948 | [57] | Langer J S.Dendritic sidebranching in the three-dimensional symmetric model in the presence of noise[J]. Phys. Rev., 1987, 36A: 3350 | [58] | Barber M N, Barbieri A, Langer J S.Dynamics of dendritic sidebranching in the two-dimensional symmetric model of solidification[J]. Phys. Rev., 1987, 36A: 3340 | [59] | Dougherty A, Kaplan P D, Gollub J P.Development of side branching in dendritic growth[J]. Phys. Rev. Lett., 1988, 58: 1652 | [60] | Brener E, Temkin D.Noise-induced sidebranching in the three-dimensional nonaxisymmetric dendritic growth[J]. Phys. Rev., 1995, 51E: 351 | [61] | Pocheau A, Bodea S, Georgelin M.Self-organized dendritic sidebranching in directional solidification: Sidebranch coherence within uncorrelated bursts[J]. Phys. Rev., 2009, 80E: 031601. | [62] | Guo C W, Li J J, Ma Y, et al.Growth behaviors and forced modulation characteristics of dendritic sidebranches in directional solidification[J]. Acta Phys. Sin., 2015, 64: 148101(郭春文, 李俊杰, 马渊等. 定向凝固过程中枝晶侧向分枝生长行为与强制调控规律[J]. 物理学报, 2015, 64: 148101) | [63] | Esaka H, Tamura M, Shinozuka K.Analysis of yield rate in single crystal casting process using an engineering simulation model[J]. Mater. Trans., 2005, 44: 829 | [64] | Esaka H, Shinozuka K, Tamura M.Analysis of single crystal casting process taking into account the shape of pigtail[J]. Mater. Sci. Eng., 2005, A413: 151 | [65] | Pocheau A, Deschamps J, Georgelin M.Dendrite growth directions and morphology in the directional solidification of anisotropic materials[J]. JOM, 2007, 59(7): 71 | [66] | Ghmadh J, Debierre J M, Deschamps J, et al.Directional solidification of inclined structures in thin samples[J]. Acta Mater., 2014, 74: 255 | [67] | Deschamps J, Georgelin M, Pocheau A.Growth directions of microstructures in directional solidification of crystalline materials[J]. Phys. Rev., 2008, 78E: 011605 | [68] | Xing H, Ankit K, Dong X L, et al.Growth direction selection of tilted dendritic arrays in directional solidification over a wide range of pulling velocity: A phase-field study[J]. Int. J. Heat Mass Transfer, 2018, 117: 1107 | [69] | Xing H, Dong X L, Chen C L, et al.Phase-field simulation of tilted growth of dendritic arrays during directional solidification[J]. Int. J. Heat Mass Transfer, 2015, 90: 911 | [70] | George W L, Warren J A.A parallel 3D dendritic growth simulator using the phase-field method[J]. J. Comput. Phys., 2002, 177: 264 | [71] | Provatas N, Goldenfeld N, Dantzig J.Efficient computation of dendritic microstructures using adaptive mesh refinement[J]. Phys. Rev. Lett., 1997, 80: 3308 | [72] | Zhu C S, Li H, Feng L, et al.GPU accelerated phase-field simulation of convection effect on dendritic growth[J]. J. Comput. Theor. Nanosci., 2015, 12: 3591 | [73] | Yang C, Xu Q Y, Liu B C.GPU-accelerated three-dimensional phase-field simulation of dendrite growth in a nickel-based superalloy[J]. Comput. Mater. Sci., 2017, 136: 133 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|