Please wait a minute...
金属学报  2017, Vol. 53 Issue (8): 927-936    DOI: 10.11900/0412.1961.2017.00055
  本期目录 | 过刊浏览 |
不同Ce含量Fe-6.5%Si合金的组织、有序结构和中温拉伸塑性
于宣1, 张志豪2(), 谢建新1,2
1 北京科技大学钢铁共性技术协同创新中心 北京 100083
2 北京科技大学新材料技术研究院 北京 100083
Microstructure, Ordered Structure and Warm TensileDuctility of Fe-6.5%Si Alloy with Various Ce Content
Xuan YU1, Zhihao ZHANG2(), Jianxin XIE1,2
1 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

于宣, 张志豪, 谢建新. 不同Ce含量Fe-6.5%Si合金的组织、有序结构和中温拉伸塑性[J]. 金属学报, 2017, 53(8): 927-936.
Xuan YU, Zhihao ZHANG, Jianxin XIE. Microstructure, Ordered Structure and Warm TensileDuctility of Fe-6.5%Si Alloy with Various Ce Content[J]. Acta Metall Sin, 2017, 53(8): 927-936.

全文: PDF(2013 KB)   HTML
  
摘要: 

研究了Ce含量对铸造态Fe-6.5%Si (质量分数)合金显微组织、有序结构和中温拉伸性能的影响,分析了Ce微合金化改善合金塑性的机理。结果表明,Ce含量在150×10-6以下时,合金铸造组织无明显变化;Ce含量在210×10-6以上时,铸造组织明显细化。Ce的添加可大幅度降低合金的有序程度,显著改善中温拉伸塑性;当Ce含量为62×10-6、150×10-6和210×10-6时,400 ℃拉伸试样的平均断后伸长率由无Ce试样的7.4%分别升高至10.1%、19.3%和23.0%;而Ce含量增加至260×10-6和790×10-6时,Ce在晶界明显富集导致试样拉伸断口呈现沿晶脆断特征,平均断后伸长率下降至15.5%和14.2%。有效改善Fe-6.5%Si合金塑性的合适Ce含量范围为(150~210)×10-6

关键词 Fe-6.5%Si合金稀土元素有序结构塑性金属间化合物    
Abstract

Fe-6.5%Si (mass fraction) alloy is an important soft magnetic material due to its excellent magnetic properties. However, the existence of ordered structure in a great amount is the fundamental cause of poor ductility of the alloy, which restricts the application of the alloy seriously. To modify the microstructure and crystal structure of Fe-6.5%Si alloy by rare earth micro-alloying is one of the significant methods to reduce brittleness and improve plastic deformation ability of the alloy. Whereas, there still lack of elaborate studies on order degree reduction mechanism, ductility improvement evaluation and its connections to a varying microstructure, rare earth distribution, etc., caused by rare earth doping, which restricts a deep understanding on rare earth micro-alloying mechanism and its application in this alloy. In this work, influences of Ce content (mass fraction) on microstructure, ordered structures and warm tensile property of the as-cast alloy were investigated, and the ductility improvement mechanism of the alloy caused by Ce micro-alloying was analyzed. The results indicate that, there is no evident variation of as-cast microstructure when Ce content is below 150×10-6, while the obvious microstructure refinement is observed when Ce content exceeds 210×10-6. Ce addition reduces the alloy's order degree significantly and thus improves its warm tensile ductility obviously. Compared with Ce undoped specimens, average tensile elongation to failure at 400 ℃ increases from 7.4% to 10.1%, 19.3% and 23.0% by 62×10-6, 150×10-6 and 210×10-6 Ce doping, respectively. Inter-granular brittle fracture characteristic occurs in fractured tensile specimens due to the obvious Ce enrichment at grain boundary when Ce content increases to 260×10-6 and 790×10-6, hence the average tensile elongation to failure at 400 ℃ reduces to 15.5% and 14.2%. A reasonable Ce content is within the range of (150~210)×10-6 to improve effectively the ductility of Fe-6.5%Si alloy.

Key wordsFe-6.5%Si alloy    rare earth element    ordered structure    ductility    intermetallics
收稿日期: 2017-02-22     
ZTFLH:  TG11  
基金资助:国家重点基础研究发展计划项目No.2011CB606300和国家高技术研究发展计划项目No.2012AA03A505
作者简介:

作者简介 于 宣,男,1992年生,博士生

Sample Ce Si S P O C Fe
Ce-0 0 6.56 0.0057 0.0071 0.0005 0.023 Bal.
Ce-62 0.0062 6.62 0.0056 0.0063 0.0008 0.021 Bal.
Ce-150 0.0150 6.40 0.0049 0.0084 0.0004 0.026 Bal.
Ce-210 0.0210 6.52 0.0014 0.0068 0.0007 0.021 Bal.
Ce-260 0.0260 6.54 0.0014 0.0064 0.0006 0.020 Bal.
Ce-790 0.0790 6.57 0.0009 0.0072 0.0006 0.017 Bal.
表1  Fe-6.5%Si合金化学成分
图1  Fe-6.5%Si合金试样的显微组织OM像
图2  Ce-210试样SEM像及晶界附近元素EPMA面扫图
图3  Ce-790试样的SEM像和元素EPMA面扫图
图4  不同Ce含量Fe-6.5%Si合金的XRD谱
图5  不同Ce含量Fe-6.5%Si合金试样的DSC曲线及B2相向A2相转变峰的平均相对面积
图6  不同Ce含量试样<001>晶带轴电子衍射谱和{100}衍射斑点的暗场像
图7  无Ce与含Ce Fe-6.5%Si合金试样的有序结构形成特征示意图
图8  不同Ce含量Fe-6.5%Si合金试样的400 ℃拉伸实验结果
图9  400 ℃时Fe-6.5%Si合金拉伸试样断口形貌
图10  Fe-6.5%Si合金的微结构特征与中温拉伸塑性随Ce含量的变化示意图
[1] Arai K I, Ishiyama K.Recent developments of new soft magnetic materials[J]. J. Magn. Magn. Mater., 1994, 133: 233
[2] Li H, Liang Y F, Yang W, et al.Disordering induced work softening of Fe-6.5wt% Si alloy during warm deformation[J]. Mater. Sci. Eng., 2015, A628: 262
[3] Okamoto H.Desk Handbook: Phase Diagrams for Binary Alloys[M]. Materials Park, OH, USA: ASM International, 2000: 1
[4] Shin J S, Bae J S, Kim H J, et al.Ordering-disordering phenomena and micro-hardness characteristics of B2 phase in Fe-(5-6.5%) Si alloys[J]. Mater. Sci. Eng., 2005, A407: 282
[5] Lin J P, Ye F, Chen G L, et al.Fabrication technology, microstructures and properties of Fe-6.5wt% Si alloy sheets by cold rolling[J]. Fron. Sci., 2007, (2): 13(林均品, 叶丰, 陈国良等. 6.5 wt% Si高硅钢冷轧薄板制备工艺, 结构和性能[J]. 前沿科学, 2007, (2): 13)
[6] Wang X L, Li H Z, Liu Z Y, et al.Effect of cooling rate on bending behavior of 6.5wt.% Si electrical steel thin sheets fabricated by strip casting and rolling[J]. Mater. Charact., 2016, 111: 67
[7] Liang Y F, Ye F, Lin J P, et al.Effect of heat treatment on mechanical properties of heavily cold-rolled Fe-6.5wt%Si alloy sheet[J]. Sci. China Technol. Sci., 2010, 53: 1008
[8] Zhang Z H, Wang W P, Fu H D, et al.Effect of quench cooling rate on residual stress, microstructure and mechanical property of an Fe-6.5Si alloy[J]. Mater. Sci. Eng., 2011, A530: 519
[9] Mo Y K, Zhang Z H, Fu H D, et al.Effects of deformation temperature on the microstructure, ordering and mechanical properties of Fe-6.5wt% Si alloy with columnar grains[J]. Mater. Sci. Eng., 2014, A594: 111
[10] Xie J X, Fu H D, Zhang Z H, et al.Deformation twinning feature and its effects on significant enhancement of tensile ductility in columnar-grained Fe-6.5wt.%Si alloy at intermediate temperatures[J]. Intermetallics, 2012, 23: 20
[11] Fu H D, Zhang Z H, Pan H J, et al.Warm/cold rolling processes for producing Fe-6.5wt% Si electrical steel with columnar grains[J]. Int. J. Miner. Metall. Mater., 2013, 20: 535
[12] Kim K N, Pan L M, Lin J P, et al.The effect of boron content on the processing for Fe-6.5wt% Si electrical steel sheets[J]. J. Magn. Magn. Mater., 2004, 277: 331
[13] Chen W S, Liu J, Cheng Z Y, et al.Effect of chromium on microstructure, ordered phase and magnetic properties of Fe-6.5wt% Si alloy[J]. Mater. Today: Proc., 2015, 2(Suppl. 2): S314
[14] Yang K, Liang Y F, Ye F, et al.Texture evolution of Nb micro-alloyed Fe14Si2 high silicon steel during warm rolling[J]. Acta Metall. Sin., 2013, 49: 1411(杨琨, 梁永锋, 叶丰等. Nb微合金化Fe14Si2高硅钢温轧板织构演变规律[J]. 金属学报, 2013, 49: 1411)
[15] Narita K, Enokizono M.Effect of nickel and manganese addition on ductility and magnetic properties of 6.5% silicon-iron alloy[J]. IEEE Trans. Magn., 1978, 14: 258
[16] Shao Y Z, Gu S R, Chen N P.Boron distribution in bccintermetallic compound Fe3(Si, Al) and improvement on its brittleness[J]. Acta. Metall. Sin., 1991, 27(2): 27(邵元智, 顾守仁, 陈南平. 硼在体心立方结构Fe3(SiAl)中的分布及其对脆性的改善[J]. 金属学报, 1991, 27(2): 27)
[17] Li H Z, Liu H T, Wang X L, et al.Effect of cerium on the as-cast microstructure and tensile ductility of the twin-roll casting Fe-6.5wt% Si alloy[J]. Mater. Lett., 2016, 165: 5
[18] Li H Z, Liu H T, Liu Z Y, et al.Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5wt.% Si electrical steel doped with cerium[J]. Mater. Charact., 2015, 103: 101
[19] Yu X, Zhang Z H, Xie J X.Effects of rare earth elements doping on ordered structures and ductility improvement of Fe-6.5wt% Si alloy[J]. Mater. Lett., 2016, 184: 294
[20] Waudby P E.Rare earth additions to steel[J]. Int. Met. Rev., 1978, 23: 74
[21] Song M M, Song B, Xin W B, et al.Effects of rare earth addition on microstructure of C-Mn steel[J]. Ironmak. Steelmak., 2015, 42: 594
[22] Lin Q, Ye W, Li S L.Rare earth dissolved in solid solution of steel and its effect on micro structure[J]. J. Chin. Rare Earth Soc., 1989, 7(2): 54(林勤, 叶文, 李栓禄. 钢中稀土固溶规律及作用研究[J]. 中国稀土学报, 1989, 7(2): 54)
[23] Li Q L, Xia T D, Lan Y F, et al.Effect of rare earth cerium addition on the microstructure and tensile properties of hypereutectic Al-20%Si alloy[J]. J. Alloys Compd., 2013, 562: 25
[24] Liang Y C, Guo J T, Sheng L Y, et al.Effects of rare earth element Gd on the microstructure and mechanical properties of NiAl-Cr(Mo)-Hf eutectic alloy[J]. Acta Metall. Sin., 2010, 46: 528(梁永纯, 郭建亭, 盛立远等. 稀土元素Gd对NiAl-Cr (Mo)-Hf共晶合金的组织和压缩性能的影响[J]. 金属学报, 2010, 46: 528)
[25] Narita K, Enokizono M.Effect of ordering on magnetic properties of 6.5-percent silicon-iron alloy[J]. IEEE Trans. Magn., 1979, 15: 911
[26] Jang P, Lee B, Choi G.Order-disorder transition and magnetic properties of Fe-6.5Si alloy powder cores[J]. Phys. Status Solidi, 2007, 204A: 4108
[27] Liu G L, Li R D.Ordering and interaction of Fe and RE atoms on grain boundaries in ZA27 alloys[J]. Acta Phys. Sin., 2006, 55: 776(刘贵立, 李荣德. ZA27合金晶界处铁、稀土元素的有序化与交互作用[J]. 物理学报, 2006, 55: 776)
[28] Zhang L, Xue S B, Gao L L, et al.Effects of trace amount addition of rare earth on properties and microstructure of Sn-Ag-Cu alloys[J]. J. Mater. Sci.: Mater. Electron., 2009, 20: 1193
[29] Raviprasad K, Chattopadhyay K.The influence of critical points and structure and microstructural evolution in iron rich Fe-Si alloys[J]. Acta Metall. Mater., 1993, 41: 609
[30] Mo Y K, Zhang Z H, Xie J X, et al.Effects of recrystallization on the microstructure, ordering and mechanical properties of cold-rolled high silicon electrical steel sheet[J]. Acta Metall. Sin., 2016, 52: 1363(莫远科, 张志豪, 谢建新等. 再结晶退火对高硅电工钢冷轧带材组织、有序结构和力学性能的影响[J]. 金属学报, 2016, 52: 1363)
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[4] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[5] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[6] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[7] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[8] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[9] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[10] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[11] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[12] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[13] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[14] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
[15] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.