Please wait a minute...
金属学报  2018, Vol. 54 Issue (2): 293-300    DOI: 10.11900/0412.1961.2017.00462
  本期目录 | 过刊浏览 |
固溶体中的化学结构单元与合金成分设计
董闯1(), 董丹丹2, 王清1
1 大连理工大学三束材料改性教育部重点实验室 大连 116024;
2 大连大学物理科学与技术学院 大连 116622
Chemical Units in Solid Solutions andAlloy Composition Design
Chuang DONG1(), Dandan DONG2, Qing WANG1
1 Key Laboratory for Materials Modification by Laser, Ion and Electron Beam, Ministry of Education,Dalian University of Technology, Dalian 116024, China
2 College of Physical Science and Technology, Dalian University, Dalian 116622, China
引用本文:

董闯, 董丹丹, 王清. 固溶体中的化学结构单元与合金成分设计[J]. 金属学报, 2018, 54(2): 293-300.
Chuang DONG, Dandan DONG, Qing WANG. Chemical Units in Solid Solutions andAlloy Composition Design[J]. Acta Metall Sin, 2018, 54(2): 293-300.

全文: PDF(1254 KB)   HTML
摘要: 

工业合金具有特定的牌号成分,理解这些特殊成分背后的结构根源可以从原子结构层面上指导新合金的研发,有效缩短工业合金的制备流程。工业合金多以固溶体结构为基础,而固溶体以化学近程有序为结构特征,长期以来,人们只能以统计方式获得溶质元素偏离平均结构的程度,由于缺失描述近程序的精确结构分析方法,导致无法构建能够指导合金成分设计的有效结构模型。既然优质合金均具有特殊成分,这些成分背后一定对应于类似于分子的特定结构单元。本课题组提出了一种全新的近程有序描述方式——团簇加连接原子。该模型认为,对于固溶体合金,存在理想满足原子间相互作用的化学结构单元,仅涵盖第一近邻团簇以及若干次近邻的连接原子,可表示为团簇成分式的形式:[团簇](连接原子)。这种团簇式类似于化学物质的分子式,是代表合金平均结构的最小结构单元。通过将Friedel振荡机制引入到团簇加连接原子模型中,建立了固溶体的团簇共振模型,给出了团簇的球周期近邻堆垛方式,从而解决了原子密度的关键问题。结果表明,团簇成分式中所包含的原子个数正比于体系的平均原子密度和团簇半径的立方,由此可以定量地计算出理想化学结构单元的具体形式。本文列举了根据公式计算得到的典型铜基二元合金最佳化学结构单元,计算所得成分与最常用工业合金高度吻合。本工作为成分设计提供了一种新的实用方法。

关键词 化学结构单元团簇加连接原子模型固溶体近程有序铜基二元工业合金    
Abstract

Industrial alloys all have specific chemical compositions as standardized in specifications. Understanding the structural origin of special compositions for these solid-solution alloys is significant to shortening the development of new industrial alloys. It is well accepted that all alloys are based on solid solutions characterized by chemical short-range ordering. Previously it was only possible to describe the deviation of solute distribution from average mode in a statistical manner. The lack of an accurate structural tool to address the characteristic short-range-order structures constitutes the major obstacle in establishing an effective structural model that allows precise composition design for alloys. Since alloys with good comprehensive performance do have specific chemical compositions, their compositions should correspond to molecule-like specific structural units. After a long effort of more than a decade, we have developed a new structural tool, so-called the cluster-plus-glue-atom model, to address any short-range-ordered structures. In particular, solid solutions can be understood as being constructed from the packing of special chemical units covering only the nearest-neighbor cluster and a few glue atoms located at the next outer shell, expressed in molecule-like cluster formula [cluster] (glue atoms). Such units represent the smallest particles that are representative of the whole structures, just like molecules do for chemical substances. After introducing Friedel oscillation, the cluster-plus-glue-atom model is turned into the cluster-resonance model that provides also the inter-cluster packing modes. Ideal atomic density is hence obtained which is only proportional to the number of atoms in the unit and the cube of the cluster radius. The calculation of chemical unit is then possible and is conducted in typical binary Cu-based industrial alloys. The calculated formulas give chemical composition that highly agree with the most popular alloy specifications. The work demonstrates its high potential for developing chemically complex alloys.

Key wordschemical unit    cluster-plus-glue-atom model    solid solution    short-range order    Cu-based industrial alloy
收稿日期: 2017-11-02     
基金资助:国家自然科学基金项目No.11674045
作者简介: 作者简介 董 闯,男,1963年生,教授,博士
图1  对分布函数g(r)及Friedel振荡的有效对势函数Φ(r)∝-sin(2kFr)/r3
图2  fcc结构中最理想的球周期堆垛方式
System ΔH Cluster Glue atoms AxBy Composition Composition Alloy specification
kJmol-1 formula %
Cu-Zn -6 [Zn-Cu12] 1.28x+y=5.12 [Zn-Cu12]Zn4 70.0Cu-30.0Zn C26000 70Cu-30Zn
Cu-Ni +2 [Cu-Cu12] 0.93x+y=3.22 [Cu-Cu12]Ni2Cu1 88.3Cu-11.7Ni C70600 90Cu-10Ni
Cu-Al -1 [Al-Cu12] 1.39x+y=5.85 [Al-Cu12]Al2Cu3 92.2Cu-7.8Al C60800 92Cu-8Al
Cu-Be 0 [Cu-Cu12] 0.69x+y=3.22 [Cu-Cu12]Be2Cu2 98.1Cu-1.9Be C17200 98Cu-2Be
Cu-Sn +7 [Cu-Cu12] 1.78x+y=3.22 [Cu-Cu12]Sn1Cu1 88.2Cu-11.8Sn C90800 88Cu-12Sn
表1  Cu基工业合金的最佳化学结构单元
[1] Tammann G.über eine farblose form des quecksilberjodides[J]. Z. Anorg. Chem., 1919, 109: 213
[2] Johansson C, Linde J.R?ntgenographische bestimmung der atomanordnung in den mischkristallreihen Au-Cu und Pd-Cu[J]. Ann. Phys., 1925, 383: 439
[3] Bradley A J, Jay A.The formation of superlattices in alloys of iron and aluminium[J]. Proc. R. Soc. London, 1932, 136A: 210
[4] Bragg W L, Williams E J.The effect of thermal agitation on atomic arrangement in alloys[J]. Proc. R. Soc. London, 1934, 145A: 699
[5] Williams E J.The effect of thermal agitation on atomic arrangement in alloys. III[J]. Proc. R. Soc. London, 1935, 152A: 231
[6] Bethe H A.Statistical theory of superlattices[J]. Proc. R. Soc. London, 1935, 150A: 552
[7] Cowley J M.An approximate theory of order in alloys[J]. Phys. Rev., 1950, 77: 669
[8] Cowley J M.Short-and long-range order parameters in disordered solid solutions[J]. Phys. Rev., 1960, 120: 1648
[9] Cowley J.Short-range order and long-range order parameters[J]. Phys. Rev., 1965, 138: A1384
[10] Dong C, Wang Q, Qiang J B, et al.From clusters to phase diagrams: Composition rules of quasicrystals and bulk metallic glasses[J]. J. Phys, 2007, 40D: R273
[11] Dong D D.Composition origin of metallic glasses and solid solution alloys: Short-range-order structural unit [D]. Dalian: Dalian University of Technology, 2017(董丹丹. 金属玻璃和固溶体合金的成分根源: 近程序结构单元 [D]. 大连: 大连理工大学, 2017)
[12] Zhang J, Wang Q, Wang Y M, et al.Revelation of solid solubility limit Fe/Ni= 1/12 in corrosion resistant Cu-Ni alloys and relevant cluster model[J]. J. Mater. Res., 2010, 25: 328
[13] Li F W, Qiang J B, Wang Y M, et al.Revisiting Al-Ni-Zr bulk metallic glasses using the 'cluster-resonance' model[J]. Chin. Sci. Bull., 2011, 56: 3902
[14] Dong D D, Zhang S, Wang Z J, et al.Composition interpretation of binary bulk metallic glasses via principal cluster definition[J]. Mater. Des., 2016, 96: 115
[15] Luo L J, Chen H, Wang Y M, et al.24 electron cluster formulas as the 'molecular' units of ideal metallic glasses[J]. Philos. Mag., 2014, 94: 2520
[16] Dong D D, Dong C.Composition interpretation procedures of bulk metallic glasses via example of Cu64Zr36[J]. J. Non-Cryst. Solids, 2017, 460: 125
[17] Mackay A L, Finney J L.Structuration[J]. J. Appl. Crystallogr., 1973, 6: 284
[18] Chen H, Qiang J B, Wang Q, et al.A cluster-resonance criterion for Al-TM quasicrystal compositions[J]. Isr. J. Chem., 2011, 51: 1226
[19] Hume-Rothery W, Smallman R E, Haworth C W.The Structure of Metals and Alloys[M]. London: The Institute of Metals, 1969: 1
[20] Cahn R W.Homo or hetero?[J]. Nature, 1978, 271: 407
[21] Jones H.Notes on work at the University of Bristol, 1930-7[J]. Proc. R. Soc. London, 1980, 371A: 52
[22] Friedel J.Electronic structure of primary solid solutions in metals[J]. Adv. Phys., 1954, 3: 446
[23] Li Z Z.Solid State Theory [M]. Beijing: Higher Education Press, 2002: 1(李正中. 固体理论[M]. 北京: 高等敎育出版社, 2002: 1)
[24] Friedel J.Metallic alloys[J]. Il Nuovo Cimento (1955-1965), 1958, 7: 287
[25] Dong D D, Zhang S, Wang Z R, et al.Nearest-neighbor coordination polyhedral clusters in metallic phases defined using Friedel oscillation and atomic dense packing[J]. J. Appl. Crystallogr., 2015, 48: 2002
[26] Waseda Y, Suzuki K.Atomic distribution and magnetic moment in liquid iron by neutron diffraction[J]. Phys. Status Solidi, 1970, 39B: 669
[27] Mauro N A, Bendert J C, Vogt A J, et al.High energy x-ray scattering studies of the local order in liquid Al[J]. J. Chem. Phys., 2011, 135: 044502
[28] Abrikosov I A, Niklasson A M N, Simak S I, et al. Order-N Green's function technique for local environment effects in alloys[J]. Phys. Rev. Lett., 1996, 76: 4203
[29] Stolz U, Arpshofen I, Sommer F, et al.Determination of the enthalpy of mixing of liquid alloys using a high-temperature mixing calorimeter[J]. J. Phase Equil., 1993, 14: 473
[30] Baker H, Okamoto H.Alloy phase diagrams[M]. ASM International: ASM Handbook, 1992, 3: 501
[31] Metals A S F, Davis J R. Properties and selection: Nonferrous alloys and special-purpose materials[M]. ASM International: ASM Handbook, 2009: 1
[32] Reinhard L, Sch?nfeld B, Kostorz G, et al.Short-range order in α-brass[J]. Phys. Rev., 1990, 41: 1727
[33] Gaskell P H.On the density of transition metal-metalloid glasses[J]. Acta Metall., 1981, 29: 1203
[34] Aalders J, Van Dijk C, Radelaar S.Neutron scattering study of short-range clustering in CuNi (Fe) alloys[J]. J. Phys. Met. Phys., 1984, 14F: 2801
[35] Massalski T.The Al-Cu (aluminum-copper) system[J]. Bull. Alloy Phase Diagr., 1980, 1: 27
[36] Takeuchi A, Inoue A.Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Mater. Trans., 2005, 46: 2817
[37] Koo Y M, Cohen J B.The structure of GP zones in Cu-10.9at.% Be[J]. Acta Metall., 1989, 37: 1295
[38] Chakrabarti D J, Laughlin D E, Tanner L E.The Be-Cu (beryllium-copper) system[J]. Bull. Alloy Phase Diagr., 1987, 8: 269
[1] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[2] 张敏, 慕二龙, 王晓伟, 韩挺, 罗海龙. TA1/Cu/X65复合板焊接接头微观组织及力学性能[J]. 金属学报, 2018, 54(7): 1068-1076.
[3] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
[4] 毕宗岳,杨军,刘海璋,张万鹏,杨耀彬,田磊,黄晓江. TA1/X65复合板焊接工艺及焊缝组织和性能研究*[J]. 金属学报, 2016, 52(8): 1017-1024.
[5] 接金川, 邹鹑鸣, 王宏伟, 魏尊杰. Al-20Mg合金高压凝固力学性能研究*[J]. 金属学报, 2014, 50(8): 971-978.
[6] 马坪, 吴二冬, 李武会, 孙凯, 陈东风. Ti0.7Zr0.3(Cr1-xVx)2合金的结构和贮氢性能*[J]. 金属学报, 2014, 50(4): 454-462.
[7] 林小娉 董允 徐瑞 孙桂芳 焦世辉. 超高压凝固条件下Mg-6Zn-3Y合金的晶体形态及相演变[J]. 金属学报, 2011, 47(12): 1550-1554.
[8] 马仁涛 郝传璞 王清 任明法 王英敏 董闯. 低弹bcc结构Ti-Mo-Nb-Zr固溶体合金的“团簇+连接原子”模型及其成分设计[J]. 金属学报, 2010, 46(9): 1034-1040.
[9] 沈世妃 马伟民 闻雷 郭易芬 王华栋 尹 凯. Y2-x-yGdxEuyO3纳米材料制备过程中的固溶行为及其发光性能[J]. 金属学报, 2009, 45(2): 227-231.
[10] 张杰 王清 王英敏 董闯. 含Fe和Mn的Ni30Cu70固溶体团簇模型与耐蚀性研究[J]. 金属学报, 2009, 45(11): 1390-1395.
[11] 唐爱东; 黄可龙 . 合成温度对六方Li-Ni-Co-Mn-O固溶体结构和性能的影响[J]. 金属学报, 2005, 41(12): 1280-1284 .
[12] 陈妮; 李锐; 朱云峰; 刘永锋; 潘洪革 . Ti--V基多相贮氢电极合金的电化学吸放氢机理研究[J]. 金属学报, 2004, 40(11): 1200-1204 .
[13] 许裕生;江焕宏;钱敏;金宗明;王耀荣;仇国阳;马荣兵;薛青. 少量硼对Fe-Cu纳米粉粒固溶度的影响[J]. 金属学报, 1997, 33(8): 807-813.
[14] 李伯林;朱敏;李隆;罗堪昌;李祖鑫. 机械合金化形成的Fe-Cu纳米晶过饱和固溶体的硬化及软化[J]. 金属学报, 1997, 33(4): 420-426.
[15] 方前锋. Ta-O固溶体中的Snoek-K■ster弛豫[J]. 金属学报, 1996, 32(6): 565-572.