Please wait a minute...
金属学报  2017, Vol. 53 Issue (10): 1337-1346    DOI: 10.11900/0412.1961.2017.00243
  研究论文 本期目录 | 过刊浏览 |
医用纯Mg表面多种复合处理膜层的组织结构和体内外性能
李慕勤(), 姚海涛, 魏方红, 刘明达, 王赞, 彭书浩
佳木斯大学黑龙江省高校生物医学材料重点实验室 佳木斯 154007
The Microstructure and in Vivo and in Vitro Property of Multi-Component Composite Films on the Biomedical Pure Magnesium Surface
Muqin LI(), Haitao YAO, Fanghong WEI, Mingda LIU, Zan WANG, Shuhao PENG
Key Laboratory of Biomaterials of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
全文: PDF(4417 KB)   HTML
  
摘要: 

为了提高医用纯Mg的耐蚀性和生物活性,采用超声微弧氧化(UMAO)、碱处理(OH)、硅烷转化膜处理(SCA)和自组装丝素蛋白(SF)多种处理方法,在Mg表面形成多元膜层(UMAO-OH-SCA-SF),通过SEM、红外光谱、电化学测试、细胞实验和动物植入实验,研究膜层表面形貌、组织结构、耐腐蚀性能、细胞活性和体内骨生长。结果表明,超声微弧氧化膜层以MgO为主相,碱羟基利于与硅烷偶联形成Si-O-Mg膜,再自组装丝素,随着浸泡丝素蛋白时间增加,丝素蛋白的结构由无规卷曲向β-折叠转变,多元复合膜层提高了自腐蚀电位,自腐蚀电流密度降低了2个数量级。多元复合膜层更能促进成骨细胞的增殖、黏附与分化,具有良好的早期骨整合能力和在纯Mg降解过程中控制Mg2+溶出能力,其中UMAO-OH-SCA-SF/1.5h最佳。

关键词 纯Mg超声微弧氧化硅烷丝素蛋白耐蚀性生物活性    
Abstract

Entering into 21 Century,the degradable Mg and Mg alloy become research focus for the development of Internal fixation material from inert to active metal. The polybasic coating (UMAO-OH-SCA-SF) was prepared by ultrasound micro-arc oxidation (UMAO), alkali treatment (OH), treatment of silicohydride conversion coating (SCA) and the treatment of self-assembly silk fibroin on the surface of magnesium, which can improve the corrosion resistance and bioactivity of pure magnesium. The surface topography, structure, corrosion resistance, cell activity and bone growth in vivo of the coating were studied by SEM, IR spectra, electrochemical measurement, vitro experiment and implant test. The results show that the main phase of coating is MgO. The alkali treatment is beneficial to forming Si-O-Mg film by silicohydride coupling. With the self-assembly silk fibroin time increasing, the silk fibroin structure changes from random coil to β-fold. The polybasic coating self-corrosion is improved and self-corrosion current is reduced by two orders of magnitude. Compared to substrate, the polybasic coating has better proliferation, adherent and differentiation of osteoblast. It has a better bone integration capacity in the bone healing early stage, and which can control magnesium ion dissolving. The UMAO-OH-SCA-SF/1.5h coating has the best property.

Key wordspure magnesium    ultrasound micro-arc oxidation    silicohydride    silk fibroin    corrosion resistance    bioactivity
收稿日期: 2017-06-19     
ZTFLH:  R318.08  
基金资助:国家自然科学基金面上项目No.31370979
作者简介:

作者简介 李慕勤,女,1955年生,教授,博士

引用本文:

李慕勤, 姚海涛, 魏方红, 刘明达, 王赞, 彭书浩. 医用纯Mg表面多种复合处理膜层的组织结构和体内外性能[J]. 金属学报, 2017, 53(10): 1337-1346.
Muqin LI, Haitao YAO, Fanghong WEI, Mingda LIU, Zan WANG, Shuhao PENG. The Microstructure and in Vivo and in Vitro Property of Multi-Component Composite Films on the Biomedical Pure Magnesium Surface. Acta Metall Sin, 2017, 53(10): 1337-1346.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00243      或      https://www.ams.org.cn/CN/Y2017/V53/I10/1337

图1  种植体植入及下颌骨块取材
图2  不同膜层的表面和断面SEM像
图3  不同膜层表面的元素含量
图4  不同膜层的傅里叶变换红外光谱图
图5  不同膜层表面的接触角
图6  不同膜的Tafel极化曲线
Coating Ecorr / V icorr
10-5Acm-2
UMAO -1.554±0.10 211.3±8.2
UMAO-OH-SCA-SF/0.5h -1.482±0.11 6.577±1.2
UMAO-OH-SCA-SF/1.0h -1.461±0.15 3.595±0.91
UMAO-OH-SCA-SF/1.5h -1.447±0.10 2.135±0.51
表1  不同膜层在NaCl溶液中的Ecorr和icorr
图7  不同膜层成骨细胞增殖及活性的柱状图
图8  不同膜层植入体周围骨组织苏木精伊红(HE)染色
图9  不同膜层植入体-骨结合界面BMP-2平均灰度测定
图10  不同膜层植入动物中的血清Mg2+浓度变化
[1] Vormann J.Magnesium: Nutrition and metabolism[J]. Mol. Aspects Med., 2003, 24: 27
[2] Witte F.The history of biodegradable magnesium implants: A review[J]. Acta Biomater., 2010, 6: 1680
[3] Narayan R J.The next generation of biomaterial development[J]. Philos. Trans. Roy. Soc., 2010, 368A: 1831
[4] Hench L L, Polak J M.Third-generation biomedical materials[J]. Science, 2002, 295: 1014
[5] Chen Y J, Xu Z G, Smith C, et al.Recent advances on the development of magnesium alloys for biodegradable implants[J]. Acta Biomater., 2014, 10: 4561
[6] Zheng Y F, Gu X N, Witte F.Biodegradable metals[J]. Mater. Sci. Eng., 2014, R77: 1
[7] Han X G, Zhu X P, Lei M K.Electrochemical properties of microarc oxidation films on a magnesium alloy modified by high-intensity pulsed ion beam[J]. Surf. Coat. Technol., 2011, 206: 874
[8] Pan Y K, Chen C Z, Wang D G, et al.Influence of additives on microstructure and property of microarc oxidized Mg-Si-O coatings[J]. Ceram. Int., 2012, 38: 5527
[9] Qu L J, Li M Q, Zhang E L, et al.Corrosion resistance of magnesium alloy coated by ultrasonic-micro arc oxidation in simulated body fluid[J]. Trans. Mater. Heat Treat., 2013, 34(3): 130(曲立杰, 李慕勤, 张二林等. 超声微弧氧化处理镁合金模拟体液中的耐蚀性[J]. 材料热处理学报, 2013, 34(3): 130)
[10] Xu Y D, Chen Y B, Shi M, et al.Surface treatment application of silane on metals[J]. Met. Funct. Mater., 2011, 18(5): 66(许育东, 陈云帮, 石敏等. 金属表面硅烷化处理应用的研究[J]. 金属功能材料, 2011, 18(5): 66)
[11] Palanivel V, Zhu D Q, van Ooij W J. Nanoparticle-filled silane films as chromate replacements for aluminum alloys[J]. Prog. Org. Coat., 2003, 47: 384
[12] Hu J M, Liu L, Zhang J T, et al.Studies of surface treatment of aluminum alloys by BTSE silane agent[J]. Acta Metall. Sin., 2004, 40: 1189(胡吉明, 刘倞, 张金涛等. 铝合金表面BTSE硅烷化处理研究[J]. 金属学报, 2004, 40: 1189)
[13] Zucchi F, Grassi V, Frignani A, et al.Influence of a silane treatment on the corrosion resistance of a WE43 magnesium alloy[J]. Surf. Coat. Technol., 2006, 200: 4136
[14] Zhang W, Sun Z F, Ding T, et al.Effect of silane treatment on corrosion resistance of AZ31 magnesium alloys[J]. J. Chongqing Inst. Technol.(Nat. Sci.), 2009, 23(9): 128(张微, 孙智富, 丁婷等. 硅烷处理对AZ31镁合金耐蚀性的影响[J]. 重庆工学院学报(自然科学版), 2009, 23(9): 128)
[15] Zhou C Z, Confalonieri F, Medina N, et al.Fine organization of Bombyx mori fibroin heavy chain gene[J]. Nucleic Acids Res., 2000, 28: 2413
[16] Tanaka K, Kajiyama N, Ishikura K, et al.Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori[J]. Biochim. Biophys. Acta, 1999, 1432: 92
[17] Mirahmadi F, Tafazzoli-Shadpour M, Shokrgozar M A, et al.Enhanced mechanical properties of thermo sensitive chitosan hydrogel by silk fibers for cartilage tissue engineering[J]. Mater. Sci. Eng., 2013, C33: 4786
[18] Zhu H L, Wu B W, Feng X X, et al.Preparation and characterization of bioactive mesoporous calcium silicate-silk fibroin composite films[J]. J. Biomed. Mater. Res., 2011, 98B: 330
[19] Wang X Y, Kim H J, Xu P, et al.Biomaterial coatings by stepwise deposition of silk fibroin[J]. Langmuir, 2005, 21: 11335
[20] Li M Q, Liu J, Ma C.Preparation method of magnesium surface ultrasonic micro-arc oxidation-HF-silane coupling agent multistage compound bioactive coating [P]. Chin Pat, 201310537474.5, 2014(李慕勤, 刘江, 马臣. 镁表面超声微弧氧化-HF-硅烷偶联剂多级复合生物活性涂层制备方法 [P]. 中国专利, 201310537474.5, 2014)
[21] Li M Q, Ma C, Zhang A Q.Preparation method of ultrasonic microarc oxidation silver-carrying antibiotic bioactive coating on magnesium and titanium surface [P]. Chin Pat, 200910072105.7, 2010(李慕勤, 马臣, 张爱琴. 镁、钛表面超声微弧氧化载银抗菌生物活性涂层制备方法 [P]. 中国专利, 2009100721057.7, 2010)
[22] Gao J C, Li L C, Wang Y, et al.Corrosion resistance of alkali heat treated magnesium in bionics simulated body fluid[J]. Trans. Mater. Heat Treat., 2005, 30(4): 38(高家诚, 李龙川, 王勇等. 碱热处理镁及其在仿生模拟体液中耐蚀性能[J]. 金属热处理, 2005, 30(4): 38)
[23] Correa P S, Malfatti C F, Azambuja D S.Corrosion behavior study of AZ91 magnesium alloy coated with methyltriethoxy silane doped with cerium ions[J]. Prog. Org. Coat., 2011, 72: 739
[24] Wu H J, Lu J T.Characterization and formation of silane film on hot-dipped galvanized steel sheet[J]. Mater. Prot., 2009, 42(5): 7(吴海江, 卢锦堂. 热镀锌钢表面硅烷膜的制备、表征及成膜机理[J]. 材料保护, 2009, 42(5): 7)
[25] Fang X X, Cao Y B, Liang W, et al.Conventional treatment technology and silanization technology for the surface of magnesium alloy[J]. J. Chongqing Inst. Technol.(Nat. Sci.), 2010, 12(2): 123(方欣欣, 曹岳斌, 梁伟等. 镁合金表面常规处理与硅烷化处理技术[J]. 重庆科技学院学报(自然科学版), 2010, 12(2): 123)
[26] Shi P J, Goh J C H. Self-assembled silk fibroin particles: Tunable size and appearance [J]. Powder Technol., 2012, 215-216: 85
[27] Cheng C, Shao Z Z, Vollrath F.Silk fibroin-regulated crystallization of calcium carbonate[J]. Adv. Funct. Mater., 2008, 18: 2172
[28] Hu D D, Yang M Y, Zhu L J.Influence of silk fibroin-based biomaterials on cell behaviors[J]. Bull. Seric., 2016, 47(1): 6(胡豆豆, 杨明英, 朱良均. 丝素蛋白生物材料对细胞行为的影响[J]. 蚕桑通报, 2016, 47(1): 6)
[29] Marolt D, Augst A, Freed L E, et al.Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors[J]. Biomaterials, 2006, 27: 6138
[30] Yang Y M, Ding F, Wu J, et al.Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration[J]. Biomaterials, 2007, 28: 5526
[31] Hein J, Hartmann K.Reference ranges for laboratory parameters in rabbits[J]. Tier?rztl. Praxis Kleint., 2003, (5): 321
[32] Yang L, Chen Y, Zhu L J, et al.In vivo degradation test of a novel silk fibroin scaffold[J]. Bull. Seric., 2011, 37: 713(杨磊, 陈宇, 朱良均等. 一种新型丝素支架材料的体内降解试验[J]. 蚕桑通报, 2011, 37: 713)
[1] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[2] 魏琳,王志军,吴庆峰,尚旭亮,李俊杰,王锦程. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7): 840-848.
[3] 操发春, 吴航, 杨延格, 曹京宜, 张涛, 王福会. γ-APS接枝环氧树脂分子对环氧涂层/金属界面化学键合的研究[J]. 金属学报, 2019, 55(2): 238-248.
[4] 梁秀兵, 范建文, 张志彬, 陈永雄. 铝基非晶纳米晶复合涂层显微组织与腐蚀性能研究[J]. 金属学报, 2018, 54(8): 1193-1203.
[5] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[6] 杨海欧, 尚旭亮, 王理林, 王志军, 王锦程, 林鑫. 单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响[J]. 金属学报, 2018, 54(6): 905-910.
[7] 于晓明, 谭丽丽, 刘宗元, 杨柯, 朱忠林, 李扬德. Ti6Al4V表面生物功能纯Mg薄膜制备及性能研究[J]. 金属学报, 2018, 54(6): 943-949.
[8] 杨柯, 牛梦超, 田家龙, 王威. 新一代飞机起落架用马氏体时效不锈钢的研究[J]. 金属学报, 2018, 54(11): 1567-1585.
[9] 张二林, 王晓燕, 憨勇. 医用多孔Ti及钛合金的国内研究现状[J]. 金属学报, 2017, 53(12): 1555-1567.
[10] 卢晓锋, 肖明, 陈阳梅, 杨帮成. 灭活细菌生物膜杂化Ti金属材料的生物活性研究[J]. 金属学报, 2017, 53(10): 1402-1412.
[11] 彭聪, 张书源, 任玲, 杨柯. 冷却速率对含Cu钛合金显微组织和性能的影响[J]. 金属学报, 2017, 53(10): 1377-1384.
[12] 田家龙,李永灿,王威,严伟,单以银,姜周华,杨柯. 多相强化型马氏体时效不锈钢中的合金元素偏聚效应*[J]. 金属学报, 2016, 52(12): 1517-1526.
[13] 王新印, 夏妍, 周亚茹, 聂林林, 曹发和, 张鉴清, 曹楚南. 基于扫描电化学显微镜产生/收集和反馈模式研究纯Mg腐蚀行为*[J]. 金属学报, 2015, 51(5): 631-640.
[14] 贺宏, 李静媛, 秦丽雁, 王一德, 房菲. 不同变形工艺后0Cr32Ni7Mo4N双相不锈钢的组织及性能*[J]. 金属学报, 2014, 50(1): 1-10.
[15] 韩啸,陈吉,孙成,武占文,吴新春,张星航. 块体超细晶304L不锈钢的腐蚀及钝化性能的研究[J]. 金属学报, 2013, 49(3): 265-270.