Please wait a minute...
金属学报  2017, Vol. 53 Issue (10): 1402-1412    DOI: 10.11900/0412.1961.2017.00290
  研究论文 本期目录 | 过刊浏览 |
灭活细菌生物膜杂化Ti金属材料的生物活性研究
卢晓锋1,2, 肖明1,2, 陈阳梅1,2, 杨帮成1,2()
1 四川大学生物材料工程研究中心 成都 610064
2 四川大学国家生物医学材料工程技术研究中心 成都 610064
Bioactivity of Titanium Metal Hybridized with Inactivated Bacterial Biofilm
Xiaofeng LU1,2, Ming XIAO1,2, Yangmei CHEN1,2, Bangcheng YANG1,2()
1 Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China
2 National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
引用本文:

卢晓锋, 肖明, 陈阳梅, 杨帮成. 灭活细菌生物膜杂化Ti金属材料的生物活性研究[J]. 金属学报, 2017, 53(10): 1402-1412.
Xiaofeng LU, Ming XIAO, Yangmei CHEN, Bangcheng YANG. Bioactivity of Titanium Metal Hybridized with Inactivated Bacterial Biofilm[J]. Acta Metall Sin, 2017, 53(10): 1402-1412.

全文: PDF(10046 KB)   HTML
摘要: 

为调控生物活性Ti金属材料的生物活性,使用灭活的细菌生物膜对其进行杂化。金黄色葡萄球菌(S.aureus)在纯Ti (P-Ti)和酸碱处理Ti (AA-Ti)表面培养5 d后在121 ℃、0.13 MPa条件下灭活30 min,获得细菌生物膜杂化的纯Ti (BP-Ti)和酸碱处理Ti (BAA-Ti)。BCA蛋白分析和苯酚-硫酸分析表明,在BAA-Ti表面的细菌生物膜的细胞外基质较BP-Ti表面细菌生物膜的细胞外基质含较多蛋白,而后者含有较多的多糖。酶免疫分析表明,在BP-Ti和BAA-Ti表面的肠毒素都低于阈值。模拟体液(SBF)浸泡实验表明,BAA-Ti和BP-Ti在5 d内均可诱导磷灰石形成,但BAA-Ti诱导磷灰石能力低于BP-Ti。AA-Ti在1 d内可诱导磷灰石生成,但在5 d内P-Ti表面无磷灰石生成。表明生物膜提高了BP-Ti的生物活性,但降低了BAA-Ti的生物活性。这可能源于生物膜中多糖有利于促进磷灰石的形成,而其中的蛋白抑制磷灰石的形成。MG-63细胞培养实验表明,细胞增殖能力顺序为:BAA-Ti

关键词 Ti生物膜杂化多糖蛋白生物活性    
Abstract

Bacterial biofilm contained with proteins and polysaccharides, which made it have the potential to mimic extracellular matrix for tissue repair. It also has the properties to attach the substrate firmly. In order to regulate the bioactivity of titanium metal, inactivated bacterial biofilm was hybridized on the metal surfaces. Staphylococcus aureus (S.aureus) was cultured for 5 d on pure titanium metal (P-Ti) and that subjected to acid-alkali treatment (AA-Ti), and then the bacteria was inactivated at 121 ℃ and 0.13 MPa for 30 min to get hybridized titanium metals BP-Ti and BAA-Ti respectively. BCA (bicinchoninic acid) assay and phenol-sulfuric acid analysis showed the extracellular matrix (ECM) in the biofilm on BAA-Ti contented less polysaccharide and more protein than that on BP-Ti. Enzyme immunoassay showed the staphylococcal enterotoxins in both biofilms were lower than the threshold value. SBF (simulated body fluid) soaking experiments showed both BAA-Ti and BP-Ti could induce apatite formation after 5 d, and BAA-Ti induced less apatite than the BP-Ti did. The AA-Ti could induce apatite formation at 1 d, but there is no apatite formation on P-Ti even after 5 d. It indicated that the biofilm decreased the bioactivity of BAA-Ti, but increased the bioactivity of BP-Ti. This effect might depend on the roles of proteins and polysaccharide in the biofilms which could restrain the apatite formation for the former, and accelerate the apatite formation for the later. When osteosarcoma cell MG-63 was cultured on the metals for 3 d, the cell proliferation ability on the metals followed by the order of BAA-Ti

Key wordstitanium    biofilm hybridization    polysaccharide    protein    bioactivity
收稿日期: 2017-07-12     
ZTFLH:  TG178  
基金资助:国家重点研发计划项目No.2016YFC1102700,国家自然科学基金项目Nos.31570966和31771035,四川省科技支撑计划项目No.2012FZ0122,成都市科技惠民项目No.2015-HM01-00142-SF及江苏省生物医用功能材料协同创新中心项目
作者简介:

作者简介 卢晓锋,男,1985年生,硕士生

图1  纯Ti (P-Ti)及酸碱处理Ti (AA-Ti)表面的SEM像及XRD谱
图2  金黄色葡萄球菌(S.aureus)在P-Ti及AA-Ti表面培养1 d后的SEM像
图3  S.aureus在P-Ti及AA-Ti表面培养5 d后的XRD谱
图4  P-Ti、AA-Ti、BP-Ti及BAA-Ti的AFM像
图5  P-Ti、AA-Ti、BP-Ti及BAA-Ti的AFM表面电势分布
图6  BAA-Ti和BP-Ti表面生物膜中的肠毒素A、B、C、D、E的OD值
图7  P-Ti、BP-Ti、AA-Ti及BAA-Ti在SBF中浸泡不同时间后表面SEM像
图8  P-Ti、BP-Ti、AA-Ti和BAA-Ti在SBF中浸泡不同时间后的XRD谱
图9  P-Ti, BP-Ti, AA-Ti 和 BAA-Ti在SBF中浸泡不同时间的FTIR谱
图10  MG-63细胞在材料表面培养不同时间后的MTT分析结果
图11  MG-63细胞在材料表面培养不同时间后的CLSM分析结果
图12  MG-63细胞在材料表面培养3 d后的SEM像
[1] Liu X Y, Chu P K, Ding C X.Surface modification of titanium, titanium alloys, and related materials for biomedical applications[J]. Mater. Sci. Eng., 2004, R47: 49
[2] Kim H M, Miyaji F, Kokubo T, et al.Preparation of bioactive Ti and its alloys via simple chemical surface treatment[J]. J. Biomed. Mater. Res., 1996, 32A: 409
[3] Wen H B, Wolke J G C, de Wijn J R, et al. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments[J]. Biomaterials, 1997, 18: 1471
[4] Wen H B, Liu Q, De Wijn J R, et al. Preparation of bioactive microporous titanium surface by a new two-step chemical treatment[J]. J. Mater. Sci.: Mater. Med., 1998, 9: 121
[5] Yang B C, Uchida M, Kim H M, et al.Preparation of bioactive titanium metal via anodic oxidation treatment[J]. Biomaterials, 2004, 25: 1003
[6] Xiao M, Chen Y M, Biao M N, et al.Bio-functionalization of biomedical metals[J]. Mater. Sci. Eng., 2017, C70: 1057
[7] Trindade M C D, Schurman D J, Maloney W J, et al. G-protein activity requirement for polymethylmethacrylate and titanium particle-induced fibroblast interleukin-6 and monocyte chemoattractant protein-1 release in vitro[J]. J. Biomed. Mater. Res., 2000, 51: 360
[8] Cai K Y, Rechtenbach A, Hao J Y, et al.Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: Characterization and cell behaviour aspects[J]. Biomaterials, 2005, 26: 5960
[9] Wei A L, Liu S Q, Peng H, et al.An experimental study on repairing bone defect with composite of β-tricalcium phosphate-hyaluronic acid-type I collagen-marrow stromal cells[J]. Chin. J. Reparat. Reconstruct. Surg., 2005, 19: 468(卫爱林, 刘世清, 彭昊等, 磷酸三钙-透明质酸-I型胶原-骨髓基质细胞复合修复骨缺损的实验研究[J]. 中国修复重建外科杂志, 2005, 19: 468)
[10] Costerton J W, Stewart P S, Greenberg E P.Bacterial biofilms: A common cause of persistent infections[J]. Science, 1999, 284: 1318
[11] Donlan R M, Costerton J W.Biofilms: Survival mechanisms of clinically relevant microorganisms[J]. Clin. Microbiol. Rev., 2002, 15: 167
[12] Mah T F C, O'Toole G A. Mechanisms of biofilm resistance to antimicrobial agents[J]. Trends Microbiol., 2001, 9: 34
[13] Sutherland I W.Biofilm exopolysaccharides: A strong and sticky framework[J]. Microbiology, 2001, 147: 3
[14] Ye X, Li J, Lu M X, et al.Identification and molecular typing of Streptococcus agalactiae isolated from pond-cultured tilapia in China[J]. Fish. Sci., 2011, 77: 623
[15] Masuko T, Minami A, Iwasaki N, et al.Carbohydrate analysis by a phenol-sulfuric acid method in microplate format[J]. Anal. Biochem., 2005, 339: 69
[16] Cuesta G, Suarez N, Bessio M I, et al.Quantitative determination of pneumococcal capsular polysaccharide serotype 14 using a modification of phenol-sulfuric acid method[J]. J. Microbiol. Methods, 2003, 52: 69
[17] DuBois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances[J]. Anal. Chem., 1956, 28: 350
[18] Yang X N, Cui F Y, Guo X C, et al.Effects of nanosized titanium dioxide on the physicochemical stability of activated sludge flocs using the thermodynamic approach and Kelvin probe force microscopy[J]. Water Res., 2013, 47: 3947
[19] Kokubo T, Takadama H.How useful is SBF in predicting in vivo bone bioactivity?[J]. Biomaterials, 2006, 27: 2907
[20] Mosmann T.Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays[J]. J. Immunol. Methods, 1983, 65: 55
[21] Hegyi F, Zalán Z, Halász A.Improved 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) colorimetric assay for measuring the viability of lactic acid bacteria[J]. Acta Aliment., 2012, 41: 506
[22] Tadic D, Epple M.A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone[J]. Biomaterials, 2004, 25: 987
[23] Din?er M, Teker D, Sa? C P, et al.Enhanced bonding of biomimetic apatite coatings on surface-modified titanium substrates by hydrothermal pretreatment[J]. Surf. Coat. Technol., 2013, 226: 27
[24] Wi S, Pancoska P, Keiderling T A.Predictions of protein secondary structures using factor analysis on Fourier transform infrared spectra: effect of Fourier self-deconvolution of the amide I and amide II bands[J]. Biospectroscopy, 1998, 4: 93
[25] Dousseau F, Pezolet M.Determination of the secondary structure content of proteins in aqueous solutions from their amide I and amide II infrared bands. Comparison between classical and partial least-squares methods[J]. Biochemistry, 1990, 29: 8771
[26] Miyahara T, Nyan M, Shimoda A, et al.Exploitation of a novel polysaccharide nanogel cross-linking membrane for guided bone regeneration (GBR)[J]. J. Tissue Eng. Regen. Med., 2012, 6: 666
[27] Travan A, Marsich E, Donati I, et al.Polysaccharide-coated thermosets for orthopedic applications: From material characterization to in vivo tests[J]. Biomacromolecules, 2012, 13: 1564
[28] Tagaya M, Ikoma T, Takeguchi M, et al.Interfacial serum protein effect on biological apatite growth[J]. J. Phys. Chem., 2011, 115C: 22523
[29] Liang F H, Zhou L, Wang K G.Enhancement of the bioactivity of alkali-heat treated titanium by pre-calcification[J]. J. Mater. Sci. Lett., 2003, 22: 1665
[30] Wilén B M, Jin B, Lant P.The influence of key chemical constituents in activated sludge on surface and flocculating properties[J]. Water Res., 2003, 37: 2127
[31] Carré A, Lacarrière V.How substrate properties control cell adhesion. A physical-chemical approach[J]. J. Adhes. Sci. Technol., 2010, 24: 815
[32] Nagaki M, Muto Y, Ohnishi H, et al.Hepatic injury and lethal shock in galactosamine-sensitized mice induced by the superantigen staphylococcal enterotoxin B[J]. Gastroenterology, 1994, 106: 450
[1] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[2] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[3] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[4] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[5] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[6] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
[7] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[8] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[9] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[10] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[11] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[12] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[13] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[14] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[15] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.