Please wait a minute...
金属学报  2017, Vol. 53 Issue (11): 1453-1460    DOI: 10.11900/0412.1961.2017.00169
  研究论文 本期目录 | 过刊浏览 |
晶界氧化对GH4738高温合金疲劳裂纹扩展的作用
徐超, 佴启亮, 姚志浩, 江河, 董建新()
北京科技大学材料科学与工程学院 北京 100083
Grain Boundary Oxidation Effect of GH4738 Superalloy on Fatigue Crack Growth
Chao XU, Qiliang NAI, Zhihao YAO, He JIANG, Jianxin DONG()
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(10423 KB)   HTML
摘要: 

测定了GH4738合金在650、700、750及800 ℃空气环境下的疲劳裂纹扩展速率da/dNK曲线及疲劳裂纹扩展寿命a-N曲线,得出了温度对合金疲劳裂纹扩展的影响规律,并结合组织性能、疲劳特征、高温及室温下晶界氧化情况等分析了温度对合金疲劳裂纹扩展的影响。结果表明,随着温度升高,GH4738合金的疲劳裂纹扩展速率(FCGR)增加,合金的断裂方式由沿晶和穿晶混合型断裂向完全沿晶断裂转变;在初始应力强度因子幅度ΔK为40 MPam1/2、晶粒尺寸为30~40 μm时,合金的疲劳裂纹扩展寿命在650~700 ℃内显著下降,存在一个温度敏感区间,其原因并不是材料的组织和力学性能的变化,主要是高温下的氧化作用所致;O通过裂纹尖端、滑移带间接进入晶界或O直接渗入晶界的方式,与晶界处的活性元素Co、Ti、Al反应生成脆性氧化物,从而降低了晶界强度,使合金的抗疲劳性能显著下降。

关键词 镍基高温合金GH4738疲劳裂纹扩展温度敏感区间氧化    
Abstract

The low cycle fatigue (LCF) experiments of nickel-based turbine disc alloy GH4738 have been carried out at different temperatures in air to investigate the influence of temperature on fatigue crack growth (FCG) behavior of GH4738 alloy. The FCG curves (da/dNK and a-N) and their regularity have been obtained. The results show that there is a sensitive range of temperature in which the fatigue life for GH4738 decreases sharply. The microstructures and fracture surface morphologies of the GH4738 samples tested at different temperatures were observed by FE-SEM, and changes of the mechanical properties of GH4738 at high temperature were also taken into account through modifying the stress intensity factor amplitude, ΔK. The interruption experiments were carried out at 700 ℃ and room temperature, respectively, to investigate the crack growth mode and oxidation degree at the crack tip and grain boundary of the samples. And the essential reason of temperature influence on FCG behavior of GH4738 was discussed. The result showed that as the temperature increases, the fatigue crack growth rate (FCGR) of GH4738 accelerates, the fracture surface tends to coarse, and the failure mode converts from a mixed transgranular and intergranular fracture to totally intergranular fracture. The fatigue crack growth lifetime decreases remarkably at 650~700 ℃, existing a temperature-sensitive region under ΔK=40 MPam1/2 and 30~40 μm grain size conditions, which is mainly caused by the oxidation at elevated temperature, independent of the microstructure and mechanical property. Oxygen diffuses into the grain boundary through crack tip and slip band, or penetrates directly into the grain boundary, reacts with active elements (Co, Ti, Al) and generates brittle oxides. These brittle oxides result in weakening of grain boundary and significant decrease of fatigue property of GH4738.

Key wordsnickel-based superalloy    GH4738    fatigue crack growth    temperature-sensitive region    oxidation
收稿日期: 2017-05-04     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目No.51371023
作者简介:

作者简介 徐 超,男,1987年生,博士生

引用本文:

徐超, 佴启亮, 姚志浩, 江河, 董建新. 晶界氧化对GH4738高温合金疲劳裂纹扩展的作用[J]. 金属学报, 2017, 53(11): 1453-1460.
Chao XU, Qiliang NAI, Zhihao YAO, He JIANG, Jianxin DONG. Grain Boundary Oxidation Effect of GH4738 Superalloy on Fatigue Crack Growth. Acta Metall Sin, 2017, 53(11): 1453-1460.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00169      或      https://www.ams.org.cn/CN/Y2017/V53/I11/1453

图1  疲劳裂纹扩展实验的标准紧凑拉伸(CT)试样
图2  疲劳加载波形图
图3  GH4738合金组织形貌
图4  GH4738合金疲劳裂纹扩展寿命(a-N)曲线及扩展速率(da/dN-ΔK)曲线
图5  不同温度下GH4738合金的疲劳裂纹扩展寿命
图6  不同温度下GH4738合金疲劳实验后的显微组织
Temperature / ℃ E / GPa σy / MPa
650 151 706
700 137 693
750 132 683
800 126 624
表1  不同温度下GH4738合金弹性模量(E)及屈服强度(σy)[15]
图7  E和σy修正后的GH4738合金da/dN-ΔKnorm曲线
图8  不同温度下GH4738合金的断口形貌
图9  700 ℃下GH4738合金疲劳裂纹形貌及成分分析
图10  室温下GH4738合金疲劳裂纹形貌及成分分析
图11  750 ℃下GH4738合金疲劳裂纹附近的组织形貌
[1] Yao Z H, Wang Q Y, Zhang M C, et al.Microstructure control and prediction of GH4738 superalloy during hot deformation II. Verification and application of microstructural evolution model[J]. Acta. Metall. Sin., 2011, 47: 1591(姚志浩, 王秋雨, 张麦仓等. GH4738高温合金热变形过程显微组织控制与预测II. 组织演化模型验证与应用[J]. 金属学报, 2011, 47: 1591)
[2] Ghonem H, Zheng D.Oxidation-assisted fatigue crack growth behavior in alloy 718- Part I. Quantitative modeling[J]. Fatigue Fract. Eng. Mater. Struct., 1991, 14: 749
[3] Kitaguchi H S, Li H Y, Evans H E, et al.Oxidation ahead of a crack tip in an advanced Ni-based superalloy[J]. Acta Mater., 2013, 61: 1968
[4] Pineau A, Antolovich S D.High temperature fatigue of nickel-base superalloys-A review with special emphasis on deformation modes and oxidation[J]. Eng. Fail. Anal., 2009, 16: 2668
[5] Han Z X.Effects of temperature on thermal fatigue properties of some wrought superalloys[J]. Gas Turbine Expt. Res., 2007, 20: 53(韩增祥. 温度对变形高温合金热疲劳性能的影响[J]. 燃气涡轮试验与研究, 2007, 20: 53)
[6] Osinkolu G A, Onofrio G, Marchionni M.Fatigue crack growth in polycrystalline IN718 superalloy[J]. Mater. Sci. Eng., 2003, A356: 425
[7] Kruml T, Obrtlik K.Microstructure degradation in high temperature fatigue of TiAl alloy[J]. Int. J. Fatigue, 2014, 65: 28
[8] Krupp U, Kane W M, Liu X Y, et al.The effect of grain-boundary-engineering-type processing on oxygen-induced cracking of IN718[J]. Mater. Sci. Eng, 2003, A349: 213
[9] Calvarin-Amiri G, Huntz A M, Molins R.Effect of an applied stress on the growth kinetics of oxide scales formed on Ni-20Cr alloys[J]. Mater. High Temp., 2001, 18: 91
[10] Miller C F, Simmons G W, Wei R P.Evidence for internal oxidation during oxygen enhanced crack growth in P/M Ni-based superalloys[J]. Scr. Mater., 2003, 48: 103
[11] Tong J, Dalby S, Byrne J.Crack growth in a new nickel-based superalloy at elevated temperature: Part III-Characterisation[J]. J. Mater. Sci., 2005, 40: 1237
[12] Pfaendtner J A, McMahon C J Jr. Oxygen-induced intergranular cracking of a Ni-base alloy at elevated temperatures-an example of dynamic embrittlement[J]. Acta. Mater., 2001, 49: 3369
[13] Krupp U, Kane W M, Laird C, et al. Brittle intergranular fracture of a Ni-base superalloy at high temperatures by dynamic embrittlement [J]. Mater. Sci. Eng, 2004, A387-389: 409
[14] Zheng X L.On some basic problems of fatigue research in engineering[J]. Int. J. Fatigue, 2001, 23: 751
[15] CSM. China Superalloys Handbook (Book 1) [M]. Beijing: China Zhijian Publishing House, 2012: 878(中国金属学会高温材料分会. 中国高温合金手册(上卷). 北京: 中国质检出版社, 2012: 878)
[16] Lou J, Mercer C, Soboyejo W O. An investigation of the effects of temperature on fatigue crack growth in a cast lamellar Ti-45Al-2Mn-2Nb+0.8 vol.% TiB2, alloy [J]. Mater. Sci. Eng., 2001, A319-321: 618
[17] Jiang R, Everitt S, Lewandowski M, et al.Grain size effects in a Ni-based turbine disc alloy in the time and cycle dependent crack growth regimes[J]. Int. J. Fatigue, 2014, 62: 217
[18] Karabela A, Zhao L G, Lin B, et al.Oxygen diffusion and crack growth for a nickel-based superalloy under fatigue-oxidation conditions[J]. Mater. Sci. Eng., 2013, A567: 46
[19] Fournier L, Delafosse D, Magnin T.Oxidation induced intergranular cracking and Portevin-Le Chatelier effect in nickel base superalloy 718[J]. Mater. Sci. Eng., 2001, A316: 166
[20] Encinas-Oropesa A, Drew G L, Hardy M C, et al.Effects of oxidation and hot corrosion in a nickel disc alloy [A]. Proceedings of the eleventh international symposium on superalloys[C]. Pennsylvania: Champion, 2008: 1
[21] Evans H E, Li H Y, Bowen P.A mechanism for stress-aided grain boundary oxidation ahead of cracks[J]. Scr. Mater., 2013, 69: 179
[22] Andrieu E, Molins R, Ghonem H, et al.Intergranular crack tip oxidation mechanism in a nickel-based superalloy[J]. Mater. Sci. Eng., 1992, A154: 21
[23] Pédron J P, Pineau A.The effect of microstructure and environment on the crack growth behaviour of Inconel 718 alloy at 650 ℃ under fatigue, creep and combined loading[J]. Mater. Sci. Eng., 1982, 56: 143
[24] Jiang R, Everitt S, Lewandowski M, et al.Grain size effects in a Ni-based turbine disc alloy in the time and cycle dependent crack growth regimes[J]. Int. J. Fatigue, 2014, 62: 217
[25] Molins R, Hochstetter G, Chassaigne J C, et al.Oxidation effects on the fatigue crack growth behaviour of alloy 718 at high temperature[J]. Acta Mater., 1997, 45: 663
[26] Lerch B A, Jayaraman N, Antolovich S D.A study of fatigue damage mechanisms in Waspaloy from 25 to 800 ℃[J]. Mater. Sci. Eng., 1984, 66: 151
[1] 高翔, 张桂凯, 向鑫, 罗丽珠, 汪小琳. 合金元素对V(110)表面O吸附影响的第一性原理研究[J]. 金属学报, 2020, 56(6): 919-928.
[2] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[3] 姚美意,张兴旺,侯可可,张金龙,胡鹏飞,彭剑超,周邦新. Zr-0.75Sn-0.35Fe-0.15Cr合金在250 ℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56(2): 221-230.
[4] 张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.
[5] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[6] 李玲,姚生莲,赵晓丽,杨佳佳,王野熹,王鲁宁. 阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究[J]. 金属学报, 2019, 55(8): 1008-1018.
[7] 王常帅,郭莉莉,唐丽英,周荣灿,郭建亭,周兰章. GH984G合金在700 ℃水蒸气中的氧化行为[J]. 金属学报, 2019, 55(7): 893-901.
[8] 赵明雨,甄会娟,董志宏,杨秀英,彭晓. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究[J]. 金属学报, 2019, 55(7): 902-910.
[9] 丁健翔,田无边,汪丹丹,张培根,陈坚,孙正明. Ag/Ti2AlC复合材料的电弧侵蚀及退化机理[J]. 金属学报, 2019, 55(5): 627-637.
[10] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[11] 郑成明, 田青超. 合金元素对顶头钢氧化行为的影响[J]. 金属学报, 2019, 55(4): 427-435.
[12] 王莉,何禹锋,申健,郑伟,楼琅洪,张健. 第二取向对第三代单晶高温合金热疲劳过程中冷却孔孔周氧化行为的影响研究[J]. 金属学报, 2019, 55(11): 1417-1426.
[13] 张啸尘, 孟维迎, 邹德芳, 周鹏, 石怀涛. 预循环应力对高速列车关键结构用铝合金材料疲劳裂纹扩展行为的影响[J]. 金属学报, 2019, 55(10): 1243-1250.
[14] 高博, 王磊, 宋秀, 刘杨, 杨舒宇, 千叶晶彦. 预氧化对Co-Al-W基高温合金高温氧化和热腐蚀行为的影响[J]. 金属学报, 2019, 55(10): 1273-1281.
[15] 吴俊升, 张博威, 李晓刚, 黄一中. 纳米金属腐蚀[J]. 金属学报, 2018, 54(8): 1087-1093.