Please wait a minute...
金属学报  2017, Vol. 53 Issue (11): 1521-1531    DOI: 10.11900/0412.1961.2017.00083
  研究论文 本期目录 | 过刊浏览 |
铸造充型过程中液固转变影响流动行为的数值计算
曹流, 孙飞(), 陈涛, 滕子浩, 唐玉龙, 廖敦明
华中科技大学材料成形及模具技术国家重点实验室 武汉 430074
Numerical Simulation of Liquid-Solid Conversion Affecting Flow Behavior During Casting Filling Process
Liu CAO, Fei SUN(), Tao CHEN, Zihao TENG, Yulong TANG, Dunming LIAO
State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
引用本文:

曹流, 孙飞, 陈涛, 滕子浩, 唐玉龙, 廖敦明. 铸造充型过程中液固转变影响流动行为的数值计算[J]. 金属学报, 2017, 53(11): 1521-1531.
Liu CAO, Fei SUN, Tao CHEN, Zihao TENG, Yulong TANG, Dunming LIAO. Numerical Simulation of Liquid-Solid Conversion Affecting Flow Behavior During Casting Filling Process[J]. Acta Metall Sin, 2017, 53(11): 1521-1531.

全文: PDF(6335 KB)   HTML
  
摘要: 

为准确预测浇不足及冷隔,在已有的处理液固转变方法基础上,提出基于固相率变化的糊状区流动行为计算模型,该模型可以有效地处理液固转变过程中糊状区不同阶段的流动行为,即高固相率糊状区采用临界固相率方法,低固相率糊状区采用变黏度方法,中等固相率糊状区采用多孔介质拖拽模型。模拟了S型铸型水模拟实验,模拟结果与实验结果吻合很好,验证了不考虑液固转变时所采用模型的准确性。针对简单形状的底注式铸造工艺,对比分析了处理液固转变过程中采用不同控制参数的计算效果,证明了糊状区流动行为计算模型的合理性。

关键词 液固转变糊状区多孔介质变黏度有限体积法数值模拟    
Abstract

Misrun and cold shut are common defects in casting productions, which could make surface accuracy of castings poorer, even leading to cracking and casting scraps in them. The formation process of misrun and cold shut is hard to be observed directly only by experiment measures, since casting filling process is in a state of high temperature flow inside mold. The key to predict the defects accurately is the way to handle the effect of liquid-solid conversion on flow behavior. On the basis of existing methods for treating liquid-solid conversion, a calculation model of mushy region flow behavior through measurement of solid-fraction is developed, which can effectively investigate the flow behavior of mushy region in different stages. Generally, the critical solid-fraction method is adopted for mushy region with high solid-fraction, in consideration of that only the speed of high solid-fraction region is supposed to be zero during casting filling process. The variable viscosity method is applied for mushy region with low solid-fraction, due to casting filling process being unlikely to form toothpaste-like flow. However, the porous medium drag-based model is used for mushy region with middle solid-fraction, because only the middle solid-fraction region can be equivalent to porous medium. Combining the above three methods, a flow-field calculation program considering the effect of liquid-solid conversion on flow behavior during casting filling process is developed, in which finite volume method (FVM) is included for discretization equations; the pressure implicit with splitting of operator (PISO) algorithm is added for coupling pressure and velocity; the volume of fluid (VOF) algorithm is also combined for interface tracking. An numerical simulation of water-filled S-shaped channel is performed in the case of taking no account of liquid-solid conversion, and the simulated results coincide better with the experimental results, which certifies for its accuracy as an adopted model. Since the bottom filling casting craft is commonly used in single-shape casting, a comparison between the calculated results obtained using other single models and those using this model at different control parameters, is needed. The better agreement between them indicates that this new model is appropriate for calculating the flow behavior in mushy region.

Key wordsliquid-solid conversion    mushy region    porous medium    variable viscosity    finite volume method    numerical simulation
收稿日期: 2017-03-15     
ZTFLH:  TG245  
基金资助:教育部新世纪优秀人才支持计划项目No.NCET-13-0229和国家数控重大专项项目No.2012ZX04010-031
作者简介:

作者简介 曹 流,男,1991年生,博士生

图1  流动液相中树枝晶形貌演变过程示意图
图2  计算流程图
Parameter Value Unit
Water density 1000 kgm-3
Air density 1 kgm-3
Water dynamic viscosity 1×10-3 Pas
Air dynamic viscosity 1×10-5 Pas
Water-air surface tension coefficient 0.07275 Nm-1
Acceleration of gravity {0, 0, -9.8} ms-2
Inlet velocity {0, 8.7, 0} ms-1
Outlet pressure 0 Pa
表1  计算过程中所需设置的参数
图3  S型铸型水模拟实验与水的体积比和气液两相速度的模拟结果的对比
图4  底注式铸造工艺的几何及网格模型
Parameter Value Unit
Aluminum alloy density 2385 kgm-3
Air density 1 kgm-3
Aluminum alloy dynamic viscosity 0.003 Pas
Air dynamic viscosity 1×10-5 Pas
Aluminum alloy-air surface tension coefficient 0.871 Nm-1
Acceleration of gravity {0, 0, -9.8} ms-2
Inlet velocity {0, 0, 0.1} ms-1
Outlet pressure 0 Pa
Liquidus temperature of aluminum alloy 660
Solidus temperature of aluminum alloy 560
Latent heat of aluminum alloy 300 Jg-1
Inlet temperature 670
Mold temperature 30
Heat transfer coefficient between lower surface and mold 6000 Wm-2K-1
Heat transfer coefficient between other surfaces and mold 100 Wm-2K-1
表2  模拟计算过程中所设参数
图5  计算第5 s时不同临界固相率下铝相固相率、气液两相速度和铝相体积比的模拟结果对比
图6  计算第5 s时不同固相黏度下铝相固相率、气液两相速度和铝相体积比的模拟结果对比
图7  计算第5 s时不同多孔介质拖拽系数下铝相固相率、气液两相速度和铝相体积比的模拟结果对比
图8  采用基于固相率变化的糊状区流动行为计算模型时不同时刻的铝相固相率、气液两相速度和铝相体积比的模拟结果
[1] Rajkolhe R, Khan J G.Defects, causes and their remedies in casting process: A review[J]. Int. J. Res. Advent. Technol., 2014; 2: 375
[2] Dabade U A, Bhedasgaonkar R C.Casting defect analysis using design of experiments (DoE) and computer aided casting simulation technique[J]. Procedia CIRP, 2013, 7: 616
[3] Liu D R, Yang Z P, Wang L P, et al.Development of simulation of mould filling during casting: A review[J]. J. Harbin Univ. Sci. Technol., 2016, 21(3): 96(刘东戎, 杨智鹏, 王丽萍等. 铸造充型过程数值模拟技术的发展及现状评述[J]. 哈尔滨理工大学学报, 2016, 21(3): 96)
[4] Vazquez V, Juarez-Hernandez A, Mascarenas A, et al.Cold shut formation analysis on a free lead yellow brass tap[J]. Eng. Fail. Anal., 2010, 17: 1285
[5] Lee J H, Won C W, Cho S S, et al.Effects of melt flow and temperature on the macro and microstructure of scroll compressor in direct squeeze casting[J]. Mater. Sci. Eng., 2000, A281: 8
[6] Lewis R W, Ravindran K.Finite element simulation of metal casting[J]. Int. J. Numer. Meth. Eng., 2000, 47: 29
[7] Jin Z M, He J C, Xu G J.Numerical simulation of flow, temperature and thermal stress fields during twin-roll casting process[J]. Acta Metall. Sin., 2000, 36: 391(金珠梅, 赫冀成, 徐广?. 双辊连续铸轧工艺中流场、温度场和热应力场的数值计算[J]. 金属学报, 2000, 36: 391)
[8] Yoshizawa A, Nisizima S.A nonequilibrium representation of the turbulent viscosity based on a two-scale turbulence theory[J]. Phys. Fluids Fluid Dynam., 1993, 5A: 3302
[9] Neuman S P.Theoretical derivation of Darcy's law[J]. Acta Mech., 1977, 25: 153
[10] Whitaker S.Flow in porous media I: A theoretical derivation of Darcy's law[J]. Transport Porous Med., 1986, 1: 3
[11] Jana S, K?ttlitz O, Hediger F, et al.Predictions of misruns using three-phase coupled mold-filling and solidification simulations in low pressure turbine (LPT) blades [A]. IOP Conference Series: Materials Science and Engineering [C]. Bristol: IOP Publishing, 2012: 1
[12] Wang C H, Hu H J, Luo J.Computer simulation of investment casting based on procast software[J]. Foundry Technol., 2007, 28: 1360(王春欢, 胡红军, 罗静. 基于Procast软件的熔模铸造计算机模拟[J]. 铸造技术, 2007, 28: 1360)
[13] Frehse J, Málek J, Steinhauer M.On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method[J]. SIAM J. Math. Anal., 2003, 34: 1064
[14] Arnberg L, B?ckerud L, Chai G.Solidification Characteristics of Aluminum Alloys: Dendrite Coherency[M]. Schaumburg: American Foundrymen's Society, 1996: 30
[15] Carman P C.Fluid flow through granular beds[J]. Chem. Eng. Res. Des., 1937, 75: S32
[16] Voile V R, Prakash C.A fixed grid numerical modeling methodology for convection diffusion mushy region phase-change problems[J]. Int. J. Heat Mass Transfer, 1987, 30: 1709
[17] Mitchell A R, Griffiths D F.The Finite Difference Method in Partial Differential Equations[M]. Hoboken: John Wiley & Sons, 1980: 35
[18] Dhatt G, Lefran?ois E, Touzot G.Finite Element Method[M]. Hoboken: John Wiley & Sons, 2013: 40
[19] Versteeg H K, Malalasekera W.An Introduction to Computational Fluid Dynamics: The Finite Volume Method[M]. New York: Pearson Education, 2007: 45
[20] Vladimir G.Finite-difference methods for simulating the solidification of castings[J]. Mater. Tech., 2009, 43: 233
[21] Cao L, Liao D M, Lu Y Z, et al.Heat transfer model of directional solidification by LMC process for superalloy casting based on finite element method[J]. Metall. Mater. Trans., 2016, 47A: 4640
[22] Kim J, Kim D, Choi H.An immersed-boundary finite-volume method for simulations of flow in complex geometries[J]. J. Comput. Phys., 2001, 171: 132
[23] Patankar S V, Spalding D B.A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. Int. J. Heat Mass Transfer, 1972, 15: 1787
[24] Issa R I, Gosman A D, Watkins A P.The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme[J]. J. Comput. Phys., 1986, 62: 66
[25] Bridson R, Houriham J, Nordenstam M.Curl-noise for procedural fluid flow[J]. ACM Trans. Graphic., 2007, 26: 46
[26] Ménard T, Tanguy S, Berlemont A.Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet[J]. Int. J. Multiphas. Flow, 2007, 33: 510
[27] Wu S S, Liu Y Q.Principle of Material Forming [M]. 2nd Ed., Beijing: China Machine Press, 2008: 29(吴树森, 柳玉起. 材料成形原理 [M]. 第2版. 北京: 机械工业出版社, 2008: 29)
[28] Hirt C W, Nichols B D.Volume of fluid (VOF) method for the dynamics of free boundaries[J]. J. Comput. Phys., 1981, 39(1): 201
[29] Constantin P, Foias C.Navier-Stokes Equations [M]. Chicago: University of Chicago Press, 1988: 50
[30] Mathur S R, Murthy J Y.Pressure boundary conditions for incompressible flow using unstructured meshes[J]. Numer. Heat Transfer, 1997, 32B: 283
[31] Park T S.Effects of time-integration method in a large-eddy simulation using the PISO Algorithm: Part I—flow field[J]. Numer. Heat Transfer, 2006, 50A: 229
[32] Tavakoli R, Babaei R, Varahram N, et al.Numerical simulation of liquid/gas phase flow during mold filling[J]. Comput. Methods Appl. Mech. Eng., 2006, 196: 697
[33] Pang S Y, Chen L L, Zhang M C, et al.Numerical simulation two phase flows of casting filling process using SOLA particle level set method[J]. Appl. Math. Modell., 2010, 34: 4106
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[6] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[7] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[8] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[9] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[10] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[11] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[12] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[13] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[14] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.
[15] 张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580.