|
|
基于二次多项式新本构模型的铝合金搅拌摩擦焊板材成形极限研究 |
初冠南1,林艳丽1( ),宋伟宁2,张林1 |
1 哈尔滨工业大学(威海) 威海 2642092 威海北洋电气集团股份有限公司 威海 264209 |
|
Forming Limit of FSW Aluminum Alloy Blank Based on a New Constitutive Model |
Guannan CHU1,Yanli LIN1( ),Weining SONG2,Lin ZHANG1 |
1 School of Materials Science & Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China; 2 Weihai Northern Electric Group Company Limited, Weihai 264209, China |
引用本文:
初冠南,林艳丽,宋伟宁,张林. 基于二次多项式新本构模型的铝合金搅拌摩擦焊板材成形极限研究[J]. 金属学报, 2017, 53(1): 114-122.
Guannan CHU,
Yanli LIN,
Weining SONG,
Lin ZHANG.
Forming Limit of FSW Aluminum Alloy Blank Based on a New Constitutive Model[J]. Acta Metall Sin, 2017, 53(1): 114-122.
[1] | Liu J A.Make great efforts to develop aluminum parts industry and promote the modernization progress of automobile industry[J]. Alum. Fabr., 2005, (3): 8 | [1] | (刘静安. 大力发展铝合金零部件产业促进汽车工业的现代化进程[J]. 铝加工, 2005, (3): 8) | [2] | Chen Y L.The development status and prospects of automobile lightweight technology[J]. Auto Technol. Mater., 2012, (1): 1 | [2] | (陈一龙. 汽车轻量化技术发展状况及展望[J]. 汽车工艺与材料, 2012, (1): 1) | [3] | Zhu J F.Aluminum alloy used for automobile outer panel at abroad[J]. Metall. Inf. Rev., 2005, (1): 25 | [3] | (朱久发. 国外汽车面板用铝合金材料[J]. 冶金信息导刊, 2005, (1): 25) | [4] | Kumar M, Sotirov N, Chimani C M.Investigations on warm forming of AW-7020-T6 alloy sheet[J]. J. Mater. Process. Tech., 2014, 214: 1769 | [5] | Zhong Q, Shi Y, Liu B.The application of aluminum alloy in automotive light weighting[J]. Adv. Mater. Ind., 2015, (2): 23 | [5] | (钟奇, 施毅, 刘博. 铝合金在汽车轻量化中的应用[J]. 新材料产业, 2015, (2): 23) | [6] | Ma M T, Li Z G, Yi H L, et al.Polarization of light-weighted cars and application of aluminum alloys[J]. World Nonferrous. Met, 2006, (10): 10 | [6] | (马鸣图, 李志刚, 易红亮等. 汽车轻量化及铝合金的应用[J]. 世界有色金属, 2006, (10): 10) | [7] | Zheng H, Zhao X Y.Lightweight automobile and application of aluminum alloys in modern automobile production[J]. Forg. Stamp. Technol., 2016, 41: 1 | [7] | (郑晖, 赵曦雅. 汽车轻量化及铝合金在现代汽车生产中的应用[J]. 锻压技术, 2016, 41: 1) | [8] | Banabic D.Sheet Metal Forming Processes[M]. Berlin: Springer, 2010: 156 | [9] | Keeler S P, BackofenW A. Plastic instability and fracture in sheets stretched over rigid punches[J]. Trans. ASM, 1963, 56: 25 | [10] | Olsen TY.Machines for ductility testing[J]. ASTM, 1920, 20: 398 | [11] | Banabic D.Forming Limits of Sheet Metal[M]. Berlin: Springer, 2000: 173 | [12] | Swift H W.Plastic instability under plane stress[J]. J. Mech. Phys. Solids, 1952, 1: 1 | [13] | Hill R.On discontinuous plastic states, with special reference to localized necking in thin sheets[J]. J. Mech. Phys. Solids, 1952, 1: 19 | [14] | Hora P, Longchang T, Reissner J, et al.Prediction methods for ductile sheet metal failure using FE-simulation [A]. Proceedings of the IDDRG Congress[C]. Porto: IDDRG, 1994: 363 | [15] | Marciniak Z, Kuczyński K.Limit strains in the processes of stretch-forming sheet metal[J]. Int. J. Mech. Sci.,1967, 9: 609 | [16] | Marciniak Z, Kuczyński K, Pokora T.Influence of the plastic properties of a material on the forming limit diagram for sheet metal in tension[J]. Int. J. Mech. Sci.,1973, 15: 789 | [17] | Hutchinson J W, Neale K W, Needleman A.Sheet necking—I. Validity of plane stress assumptions of the long-wavelength approximation (A). In: Koistinen D P, Wang N M eds., Mechanics of Sheet Metal Forming [M]. New York/London: Plenum Press, 1978: 111 | [18] | St?ren S, Rice J R.Localized necking in thin sheets[J]. J. Mech. Phys. Solids, 1975, 23: 421 | [19] | Dudzinski D, Molinari A.Perturbation analysis of thermoviscoplastic instabilities in biaxial loading[J]. Int. J. Solids Struct., 1991, 27: 601 | [20] | Yu Z Q, Kong Q S, Ma C H, et al.Theoretical and experimental study on formability of laser seamed tube hydroforming[J]. Int. J. Adv. Manuf. Technol., 2014, 75: 305. | [21] | Chen X F, Yu Z Q, Hou B, et al.A theoretical and experimental study on forming limit diagram for a seamed tube hydroforming[J]. J. Mater. Process. Technol., 2011, 211: 2012 | [22] | He Z B, Yuan S J, Lin Y L, et al.Analytical model for tube hydro-bulging test, part I: models for stress components and bulging zone profile[J]. Int. J. Mech. Sci., 2014, 87: 297 | [23] | He Z B, Yuan S J, Lin Y L, et al.Analytical model for tube hydro-bulging tests, part II: linear model for pole thickness and its application[J]. Int. J. Mech. Sci., 2014, 87: 307 | [24] | Chu G N, Liu W J.Experimental observations of 5A02 aluminum alloy in electromagnetically assisted tube hydroforming[J]. JOM, 2013, 65: 599 | [25] | Chu G N, Yang S, Wang J X.Mechanics condition of thin-walled tubular component with rib hydroforming[J]. Trans. Nonferrous Met. Soc. China, 2012, 22(suppl.2): s280 | [26] | Hu W L, Lin Y L, Yuan S J, et al. Constitutive models for regression of various experimental stress-strain relations [J]. Int. J. Mech. Sci., 2015, 101-102: 1 | [27] | Hu Z L. Research on the plastic deformation behavior of friction stir welded2024 aluminum alloy tube [D]. Harbin: Harbin Institute of Technology, 201 | [27] | 3(胡志力. 2024铝合金搅拌摩擦焊管材塑性变形行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|