Please wait a minute...
金属学报  2015, Vol. 51 Issue (10): 1227-1234    DOI: 10.11900/0412.1961.2015.00368
  本期目录 | 过刊浏览 |
高性能涡轮盘材料GH4065及其先进制备技术研究
张北江(),赵光普,张文云,黄烁,陈石富
INVESTIGATION OF HIGH PERFORMANCE DISC ALLOY GH4065 AND ASSOCIATED ADVANCED PROCESSING TECHNIQUES
Beijiang ZHANG(),Guangpu ZHAO,Wenyun ZHANG,Shuo HUANG,Shifu CHEN
High Temperature Materials Research Division, Central Iron & Steel Research Institute, Beijing 100081
全文: PDF(5596 KB)   HTML
摘要: 

在对一系列高合金化模型合金进行系统比选研究的基础上, 发展了新型的GH4065变形高温合金, 该合金化学成分与René 88 DT合金类似, 并针对铸锻制备工艺的要求进一步实施了优化. 研制结果表明, 应用三联低偏析熔铸和多重循环热机械处理等新型技术生产的GH4065合金, 适用于制备先进航空发动机关键热端转动部件, 综合性能完全满足高压压气机盘和低压涡轮盘的工况要求, 必要时可以作为高压涡轮盘的高可靠性、低成本解决方案. 随着变形高温合金材料和制备工艺的发展, 应用铸锻工艺制备的高性能涡轮盘材料能够满足先进航空发动机的技术要求.

关键词 镍基高温合金盘形锻件铸锻工艺微观组织力学性能    
Abstract

Much attention has been paid to the development of more advanced materials for high-pressure compressor and turbine discs of gas turbine engines. A high performance wrought superalloy GH4065 for disc applications has been recently developed based on the comprehensive evaluation of a series of model alloys with characteristic chemical composition, lattice parameter, particularly γ’ volume fraction. The concentration of major alloying elements of GH4065 is closely similar with René 88 DT and specifically optimized considering the demands of ingot metallurgy technologies. Therefore, GH4065 can be considered as an ingot metallurgy version of powder metallurgy René 88 DT. Large scale vacuum arc remelting (VAR) ingots of GH4065 alloy with diameter up to 508 mm have been produced via standard triple melting techniques. Micro-scale segregation of alloying elements on large VAR ingot has been effectively suppressed due both to optimized alloying elements concentration and to improved melting techniques. Ultra-low carbon content (less than 0.02% in mass fraction) significantly decreases the dendritic segregation tendency of certain alloying elements and promotes the uniformity of microstructures. VAR ingot of GH4065 exhibits extraordinary hot plasticity, ingot conversion can be accomplished using conventional open die forging procedure. Fine and uniform γ+γ’ duplex structures can be obtained on billets and disc forgings via a newly developed multi-cycle thermomechanical processing method. The flow stress data show that the formation of γ+γ’ microduplex results in a significant decrease of flow stress in comparison with γ’ dispersion structures under exactly the same deformation conditions. The distribution of strain rate sensitivity m in relationship with temperature and strain rate accurately identifies a specific domain within which γ+γ’ microduplex exhibits superplasticity. Full-scale turbine discs of GH4065 alloy with diameter of 630 mm achieve an optimal combination of creep resistance, fatigue lifetime and ductility. GH4065 discs exhibit extraordinary microstructural and property stability during prolonged thermal exposure, which means that dendritic segregation has been successfully restricted to an acceptable level. The results reveal that highly alloyed disc alloys produced via ingot metallurgy techniques exhibit lower costs and higher productivity, and can still meet the ever increasing demand of high performance gas turbine engines.

Key wordsNi-based superalloy    disc forging    ingot metallurgy    microstructure    mechanical property
    
基金资助:*国家高技术研究发展计划项目2012AA03A510和国家重点基础研究发展计划项目2010CB631203资助

引用本文:

张北江,赵光普,张文云,黄烁,陈石富. 高性能涡轮盘材料GH4065及其先进制备技术研究[J]. 金属学报, 2015, 51(10): 1227-1234.
Beijiang ZHANG, Guangpu ZHAO, Wenyun ZHANG, Shuo HUANG, Shifu CHEN. INVESTIGATION OF HIGH PERFORMANCE DISC ALLOY GH4065 AND ASSOCIATED ADVANCED PROCESSING TECHNIQUES. Acta Metall Sin, 2015, 51(10): 1227-1234.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00368      或      https://www.ams.org.cn/CN/Y2015/V51/I10/1227

Alloy C Co Cr W Mo Al Ti Nb Fe Ni
GH4586 0.049 11.68 18.09 3.05 8.11 1.65 3.31 Bal.
GH4742 0.052 10.40 14.15 5.03 2.51 2.56 2.62 0.53 Bal.
GH4065 0.011 12.98 15.93 4.02 4.03 2.12 3.78 0.72 1.01 Bal.
René 88 DT 0.050 12.96 16.01 4.01 4.02 2.21 3.75 0.75 0.20 Bal.
GH4720 0.012 14.96 16.03 1.23 2.98 2.53 5.01 Bal.
GH4975 0.115 15.58 7.96 10.22 1.18 5.01 2.49 1.66 0.10 Bal.
表1  高性能变形高温合金涡轮盘材料化学成分对照
图1  高性能变形高温合金盘形锻件的典型制备工艺流程
图2  GH4065合金大尺寸真空自耗重熔锭的低倍组织形貌
图3  热塑性加工过程中GH4065合金的微观组织
图4  热塑性加工过程中GH4065合金的流变行为
图5  GH4065合金直径630 mm全尺寸航空涡轮盘锻件
图6  GH4065合金棒材与涡轮盘锻件的低倍组织形貌
图7  GH4065合金与典型涡轮盘材料的力学性能对比[2,3,25]
[1] Williams J C, Starke E A. Acta Mater, 2003; 51: 5775
[2] Decker R F. JOM, 2006; 58(9): 32
[3] Sims C T, Stoloff N S, Hagel W C. Superalloys II—High Temperature Materials for Aerospace and Industrial Power. New York: John wiley & Sons, 1987: 32
[4] Donachie M J, Donachie S J. Superalloys: A Technical Guide. Ohio: ASM International, 2002: 120
[5] Shi C X, Zhong Z Y. Acta Matall Sin, 1997; 33: 1 (师昌绪, 仲增墉. 金属学报, 1997; 33: 1)
[6] Heaney J A, Lasonde M L, Powell A M, Bond B J, O'Brien C M. In: Ott E, Banik A, Liu X B, Dempster I, Heck K, Andersson J, Groh J, Gabb T, Helmink R, Sarnek A W eds., 8th Int Symp on Superalloy 718 and Derivatives, Pittsburgh: TMS, 2014: 67
[7] Devaux A, Picqué B, Gervais M F, Georges E, Poulain T, Héritier P. In: Huron E S, Reed R C, Hardy M C, Mills M J, Montero R E, Telesman J eds., Superalloy 2012: 12th Int Symp on Superalloys, Pittsburgh: TMS, 2012: 911
[8] Monajati H, Jahazi M, Yue S, Taheri A K. Metall Mater Trans, 2005; 36A: 895
[9] Bond B J, O'Brien C M, Russell J L, Heane J A, Lasonde M L. In: Ott E, Banik A, Liu X B, Dempster I, Heck K, Andersson J, Groh J, Gabb T, Helmink R, Sarnek A W eds., 8th Int Symp on Superalloy 718 and Derivatives, Pittsburgh: TMS, 2014: 107
[10] Long Z D, Zhuang J Y, Deng B, Zhong Z Y. Acta Metall Sin, 1999; 35: 1211 (龙正东, 庄景云, 邓 波, 仲增墉. 金属学报, 1999; 35: 1211)
[11] Zhang B J, Zhao G P, Jiao L Y, Xu G H, Qin H Y, Feng D. Acta Metall Sin, 2005; 41: 351 (张北江, 赵光普, 焦兰英, 胥国华, 秦鹤勇, 冯 涤. 金属学报, 2005; 41: 351)
[12] Zhang B J, Zhao G P, Xu G H, Feng D. Acta Metall Sin, 2005; 41: 1207 (张北江, 赵光普, 胥国华, 冯 涤. 金属学报, 2005; 41: 1207)
[13] Carter W T, Jones R M F. JOM, 2005; 57(4): 52
[14] Cantwell P R, Tang M, Dillon S J, Luo J, Rohrer G S, Harmer M P. Acta Mater, 2014; 62: 1
[15] Robson J D. Acta Mater, 2013; 61: 7781
[16] Fang B, Ji Z, Liu M, Tian G, Jia C, Zeng T T, Hu B F, Wang C C. Mater Sci Eng, 2014; A590: 255
[17] Larrouy B, Villechaise P, Cormie J, Berteaux O. In: Ott E, Banik A, Liu X B, Dempster I, Heck K, Andersson J, Groh J, Gabb T, Helmink R, Sarnek A W eds., 8th Int Symp on Superalloy 718 and Derivatives, Pittsburgh: TMS, 2014: 713
[18] Valitov V A. In: Ott E, Banik A, Liu X B, Dempster I, Heck K, Andersson J, Groh J, Gabb T, Helmink R, Sarnek A W eds., 8th Int Symp on Superalloy 718 and Derivatives, Pittsburgh: TMS, 2014: 665
[19] Wlodek S T, Kelly M, Alden D A. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Proc 8th Int Symp on Superalloy, Pennsylvania: TMS, 1996: 129
[20] Carter J L W, Kuper M W, Uchic M D, Mills M J. Mater Sci Eng, 2014; A605: 127
[21] Findley K O, Saxena A. Metall Mater Trans, 2005; 37A: 1469
[22] Tiley J, Viswanathan G B, Srinivasan R, Banerjee R, dimiduk D M, Fraser H L. Acta Mater, 2009; 57: 2538
[23] MacSleyne J, Uchic M D, Simmons J P, Graef M D. Acta Mater, 2009; 57: 6251
[24] Radis R, Schaffer M, Albu M, Kothleitner G, Polt P, Kozeschnik E. Acta Mater, 2009; 57: 5739
[25] Reed R C. The Superalloys: Fundamentals and Applications. Cambridge: Cambridge University Press, 2006: 236
[26] Viswanathan G B, Sarosi P M, Henry M F, Whitis D D, Milligan W W, Mills M J. Acta Mater, 2005; 53: 3041
[27] Hayes R W, Unocic R R, Nasrollahzadeh M. Metall Mater Trans, 2015; 46A: 218
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[4] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[5] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[6] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[7] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[8] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[9] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[10] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[11] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[12] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[13] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[14] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[15] 张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.