Please wait a minute...
金属学报  2015, Vol. 51 Issue (7): 866-872    DOI: 10.11900/0412.1961.2014.00681
  本期目录 | 过刊浏览 |
晶体相场法研究Kirkendall效应诱发的相界空洞的形成和演变*
卢艳丽(),卢广明,胡婷婷,杨涛,陈铮
PHASE FIELD CRYSTAL STUDY ON THE FORMATION AND EVOLUTION OF PHASE BOUNDARY VOID INDUCED BY THE KIRKENDALL EFFECT
Yanli LU(),Guangming LU,Tingting HU,Tao YANG,Zheng CHEN
State Key Laboratory of Solidification Processing, Northwestern Ploytechnical University, Xi'an 710072
全文: PDF(3524 KB)   HTML
摘要: 

采用二元晶体相场模型研究了Kirkendall效应诱发的相界空洞的形成及扩展过程. 模拟结果表明: 对于取向差角较小的相界, 空洞向原子迁移率高的一侧(a相) 方向移动, 空洞的形状由最初的平行四边形向六边形演化, 空洞周围原子湮没速率大于产生速率, 从而造成空洞扩大, 空洞扩展过程中伴有相界的移动及相的长大和缩小. 对于取向差角较大的相界, 空洞还会沿相界方向扩展, 使得空洞连通, 将相界割裂开, 割裂后的两侧相界呈现锯齿状. 扩散过程中, 体系的自由能逐渐降低. 对于取向差角较小的相界, 原子迁移率差值增大, 自由能下降无明显差异. 对于取向差角较大的相界, 原子迁移率相差越大, 自由能下降速率越快. 随着相界取向差角的增大, 自由能的下降速率逐渐增大. 相界空洞的模拟结果与实验观察一致.

关键词 二元晶体相场模型Kirkendall效应相界空位Kirkendall空洞    
Abstract

The mechanical properties of materials are related to the integrity of interfaces (phase and grain boundaries). For substitutional alloys, the Kirkendall voids tend to form more easily at the phase boundary or grain boundary when the atomic mobilities of different species are unequal, which will degrade the bounding quality of interfaces. So far, there have many experimental studies on the evolution of Kirkendall voids and the formation mechanism. However, allowing for the fast process of the Kirkendall voids from formation to evolution, it is hard to capture such process in real experimental conditionals. So the formation and evolution mechanism of the Kirkendall void need to be studied. A binary phase field crystal model was used to simulate the process of void formation and expansion at phase boundaries induced by the Kirkendall effect. Simulated results show that for the low misorientation phase boundary (PB), the void moves toward the side with large atomic mobility (a phase) and the void shape evolves from the initial parallelogram to hexagon. The atomic annihilation rate around a void is faster than that of growth rate, which results in void expansion. The PB migration, phase growth and shrinkage can also be observed in void expansion. For the large misorientation PB, voids can also expand along the PB direction, resulting in the connection of voids, therefore, the PB is separated and presents zigzag shape. In the interdiffusion system, the free energy decreases. The descending speed of the free energy is almost equal for the low misorientation PB while is increasing for the large misorientation PB when the atomic mobility difference becomes larger. The descending speed of the free energy is proportional to PB misorientations. The PB void predicted from our computer simulation is consistent with the experiment observation.

Key wordsbinary phase field crystal    Kirkendall effect    phase boundary    vacancy    Kirkendall void
    
基金资助:*国家自然科学基金项目51174168和51274167, 中央高校基本科研业务费专项资金项目3102015ZY025及陕西省自然科学基础研究计划项目2014JM7261资助

引用本文:

卢艳丽,卢广明,胡婷婷,杨涛,陈铮. 晶体相场法研究Kirkendall效应诱发的相界空洞的形成和演变*[J]. 金属学报, 2015, 51(7): 866-872.
Yanli LU, Guangming LU, Tingting HU, Tao YANG, Zheng CHEN. PHASE FIELD CRYSTAL STUDY ON THE FORMATION AND EVOLUTION OF PHASE BOUNDARY VOID INDUCED BY THE KIRKENDALL EFFECT. Acta Metall Sin, 2015, 51(7): 866-872.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2014.00681      或      https://www.ams.org.cn/CN/Y2015/V51/I7/866

图1  Kirkendall效应诱发相界空洞的初始设置示意图
图 2  取向差角较小的相界(q=2°)空洞的形成及演化
图 3  取向差角较大的相界(q=12°)空洞的形成及演化过程
图 4  不同原子迁移率下, 取向差角较小与取向差角较大的扩散过程体系的自由能变化
图 5  MA=100MB时不同相界取向差角扩散体系中自由能随时间的变化
图6  模拟结果与实验结果[26]的对比
[1] Borgenstam A, Hillert M. Acta Mater, 2000; 48: 2765
[2] Gan H, Tu K N. J Appl Phys, 2005; 97: 063514-1
[3] Ding M, Wang G T, Chao B, Ho P S, Su P, Uehling T. J Appl Phys, 2006; 99: 094906-1
[4] Kim D S, Chang J H, Park J, Pak J J. J Mater Sci, 2011; 22: 703
[5] Chiu T C, Zeng K J, Stierman R, Edwards D, Ano K. Electronic Components and Technology Conference (ECTC). Vol.2, Washington D C, USA: IEEE, 2004: 1256
[6] Li X P, Zhou M B, Xia J M, Ma X, Zhang X P. Acta Metall Sin, 2011; 47: 611 (李勋平, 周敏波, 夏建民, 马 骁, 张新平. 金属学报, 2011; 47: 611)
[7] Müller W H, Weinberg K, B?hme T. Sixth Int Congr on Industrial Applied Mathematics (ICIAM07) and GAMM Annual Meeting, Zürich: PAMM, 2007: 4030035
[8] Nakahara S, McCoy R J. Appl Phys Lett, 1980; 37: 42
[9] Zeng K, Stierman R, Chiu T C, Edwards D, Ano K, Tu K N. J Appl Phys, 2005; 97: 024508-1
[10] Son H Y, Jung G J, Park B J, Paik K W. J Electron Mater, 2008; 37: 1832
[11] Xu L, Pang J, Che F. J Electron Mater, 2008; 37: 880
[12] Yu H C, Yeon D H, Li X F, Thornton K. Acta Mater, 2009; 57: 5348
[13] Delogu F. Mater Chem Phys, 2011; 125: 390
[14] Yang Y. PhD Dissertation, Shanghai Jiao Tong University, 2012 (杨 扬. 上海交通大学博士学位论文, 2012)
[15] Elder K R, Katakowski M, Haataja M, Grant M. Phys Rev Lett, 2002; 88: 245701
[16] Elder K R, Grant M. Phys Rev,?2004; 70E: 051605
[17] Zhao Y L, Chen Z, Long J, Yang T. Acta Phys Sin, 2013; 62: 118102 (赵宇龙, 陈 铮, 龙 建, 杨 涛. 物理学报, 2013; 62: 118102)
[18] Long J, Wang Z Y, Zhao Y L, Long Q H, Yang T, Chen Z. Acta Phys Sin, 2013; 62: 218101 (龙 建, 王诏玉, 赵宇龙, 龙清华, 杨 涛, 陈 铮. 物理学报, 2013; 62: 218101)
[19] Li S J, Chen Z, Yuan J J, Zhang J. Acta Phys Sin, 2014; 63: 128101 (李尚洁, 陈 铮, 员江娟, 张 静. 物理学报, 2014; 63: 128101)
[20] Zhao Y L, Chen Z, Long J, Yang T. Acta Metall Sin (Engl Lett), 2014; 27: 81
[21] Yang T, Chen Z, Dong W P. Acta Metall Sin, 2011; 47: 1301 (杨 涛, 陈 铮, 董卫平. 金属学报, 2011; 47: 1301)
[22] Gao Y J, Luo Z R, Huang L L, Lin K. Chin J Nonferrous Met, 2013; 23: 1892 (高英俊, 罗志荣, 黄礼琳, 林 葵. 中国有色金属学报, 2013; 23: 1892)
[23] Elder K R, Provatas N, Berry J, Stefanovic P, Grant M. Phys Rev, 2007;?75B: 064107
[24] Elder K R, Huang Z F, Provatas N. Phys Rev, 2010; 81E: 011602
[25] Chen L Q, Shen J. Comput Phys Commun, 1998; 108: 147
[26] Rabkin E, Klinger L, Izyumova T, Semenov V N. Scr Mater, 2000; 42: 1031
[1] 林晓冬,彭群家,韩恩厚,柯伟. 退火对热老化308L不锈钢焊材显微结构的影响[J]. 金属学报, 2019, 55(5): 555-565.
[2] 王帅鹏, 罗文华, 李赣, 李海波, 张广丰. La含量对Ce-La合金氢化动力学的影响[J]. 金属学报, 2018, 54(8): 1187-1192.
[3] 孙军, 李苏植, 丁向东, 李巨. 氢化空位的基本性质及其对金属力学行为的影响[J]. 金属学报, 2018, 54(11): 1683-1692.
[4] 李俊,刘文朋,任伊宾,沈明钢,杨柯. 物理真空去合金法制备微米级多孔不锈钢[J]. 金属学报, 2017, 53(5): 524-530.
[5] 陈连生, 李跃, 张明山, 田亚强, 郑小平, 徐勇, 张士宏. 两相区位错增殖对Mn元素配分及低碳钢贝氏体组织的影响[J]. 金属学报, 2017, 53(11): 1418-1426.
[6] 袁训华, 张启富. 22MnB5热成形钢奥氏体化时热镀Al-10%Si镀层组织的演化[J]. 金属学报, 2017, 53(11): 1495-1503.
[7] 王康,邓爱红,龚敏,卢晓波,张元元,刘翔. 多能氦离子注入对W金属微结构的影响[J]. 金属学报, 2017, 53(1): 70-76.
[8] 吕昭平, 蒋虽合, 何骏阳, 周捷, 宋温丽, 吴渊, 王辉, 刘雄军. 先进金属材料的第二相强化*[J]. 金属学报, 2016, 52(10): 1183-1198.
[9] 马文婧,柯常波,周敏波,梁水保,张新平. Sn/Cu互连体系界面和金属间化合物层Kirkendall空洞演化和生长动力学的晶体相场法模拟*[J]. 金属学报, 2015, 51(7): 873-882.
[10] 王晓姣, 沈琴, 严菊杰, 邱涛, 汪波, 李慧, 刘文庆. 沉淀强化钢中两相区NiAl相和富Cu相的析出特点[J]. 金属学报, 2014, 50(11): 1305-1310.
[11] 韦昭召,马骁,张新平. Ni2MnGa合金相界面位错结构及马氏体相变晶体学研究[J]. 金属学报, 2013, 49(2): 187-198.
[12] 周立颖,王福合. 点缺陷对γ-TiAl (100)表面O原子吸附和扩散影响的第一性原理研究[J]. 金属学报, 2013, 49(11): 1387-1391.
[13] 徐刚 蔡琳玲 冯柳 周邦新 刘文庆 王均安. 利用APT对RPV模拟钢中界面上原子偏聚特征的研究[J]. 金属学报, 2012, 48(7): 789-796.
[14] 徐刚,蔡琳玲,冯柳,周邦新,刘文庆,王均安. 利用APT对RPV模拟钢中富Cu原子团簇析出的研究[J]. 金属学报, 2012, 48(4): 407-413.
[15] 宋鲁男 刘嘉斌 黄六一 曾跃武 孟亮. 强变形对Cu-Cr合金组织性能的影响[J]. 金属学报, 2012, 48(12): 1459-1466.