Please wait a minute...
金属学报  2015, Vol. 51 Issue (2): 169-177    DOI: 10.11900/0412.1961.2014.00276
  论文 本期目录 | 过刊浏览 |
不同尺寸粒子对Al-Mg-Si-Cu系合金组织、织构和力学性能的影响*
彭祥阳, 郭明星, 汪小锋, 崔莉, 张济山, 庄林忠
北京科技大学新金属材料国家重点实验室, 北京100083
INFLUENCE OF PARTICLES WITH DIFFERENT SIZES ON MICROSTRUCTURE, TEXTURE AND MECHAN-ICAL PROPERTIES OF Al-Mg-Si-Cu SERIES ALLOYS
PENG Xiangyang, GUO Mingxing, WANG Xiaofeng, CUI Li, ZHANG Jishan, ZHUANG Linzhong
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
全文: PDF(11081 KB)   HTML
摘要: 通过拉伸实验, OM, SEM, TEM观察以及EBSD测试等手段研究了不同尺寸粒子对Al-Mg-Si-Cu系合金板材力学性能、组织和织构的影响规律. 结果表明, 随着溶质元素浓度的增加, 合金屈服强度和抗拉强度均不断增加, 但是延伸率却略有降低, 且3个方向存在一定差异. 此外, 合金的平均塑性应变比 r - 也随溶质元素浓度增加而增加. 3种合金基体内的不同尺寸粒子主要为Mg2Si, Al15Mn3Si2α-Al(Fe, Mn)Si富铁相, 这些粒子尺寸和浓度搭配合理不仅可以诱发粒子刺激形核效应(particle stimulated nucleation, 简称PSN), 而且可有效抑制晶粒长大, 最终使得合金固溶时形成大量细小再结晶晶粒, 而织构组分以旋转立方织构CubeND18, Goss织构{011}<100>, P{011}<122>和Cu{112}<111>为主. 此外, 根据合金成分、热加工工艺以及显微组织间的定量关系提出了不同尺寸粒子影响再结晶形核和长大过程的模型示意图。
关键词 Al-Mg-Si-Cu合金粒子再结晶织构PSN效应    
Abstract:To reduce the weight of car body, Al-Mg-Si-Cu alloys have been used to produce outer body panels of automobiles due to their relatively good formability in the solution treated condition and high strength in the age hardened condition. However, their formability is significantly poor compared to that of steels, which are the major drawbacks to wide-scale application of aluminum in the automotive industry. The microstructural characteristics developed during recrystallization, most notably grain size and crystallographic texture, play a dominant role in controlling the mechanical properties and formability of sheet in the T4 condition. In this work, the effect of particles with different sizes on the mechanical properties, microstructure and texture of Al-Mg-Si-Cu alloys was studied through tensile test, OM, SEM, TEM and EBSD measurement. The results reveal that with increase of solute concentration, the average plastic strain ratio, yield strength and ultimate tensile strength increase, but the elongation decreases and with different extents in the three directions. In addition, the number of observed particles with different sizes in the alloy matrix such as Mg2Si, Al15Mn3Si2 and α-Al(Fe, Mn)Si phases also increases. When the size and concentration of these particles are controlled appropriately, lots of finer recrystallized grains can form during solution treatment due to the particle stimulated nucleation (PSN) effect of coarse particles and pinning effect of finer particles. The main texture components include CubeND18, Goss{011}<100>, P{011}<122> and Cu{112}<111> for the alloy with fine-grained structure. At last, according to the relationship among alloy composition, thermomechanical processing and microstructure, the model of nucleation and growth of recrystallized grains affected by the particles with different sizes was also proposed。
Key wordsAl-Mg-Si-Cu alloy    particle    recrystallization    texture    PSN effect
收稿日期: 2014-05-23     
ZTFLH:  TG166  
基金资助:*国家高技术研究发展计划项目2013AA032403, 国家自然科学基金项目51301016和北京市青年“英才”计划项目YETP0409资助
Corresponding author: Correspondent: GUO Mingxing, associate professor, Tel: (010)82375844, E-mail: mingxingguo@skl.ustb.edu.cn     E-mail: mingxingguo@skl.ustb.edu.cn
作者简介: 彭祥阳, 男, 1989年生, 硕士生

引用本文:

彭祥阳, 郭明星, 汪小锋, 崔莉, 张济山, 庄林忠. 不同尺寸粒子对Al-Mg-Si-Cu系合金组织、织构和力学性能的影响*[J]. 金属学报, 2015, 51(2): 169-177.
PENG Xiangyang, GUO Mingxing, WANG Xiaofeng, CUI Li, ZHANG Jishan, ZHUANG Linzhong. INFLUENCE OF PARTICLES WITH DIFFERENT SIZES ON MICROSTRUCTURE, TEXTURE AND MECHAN-ICAL PROPERTIES OF Al-Mg-Si-Cu SERIES ALLOYS. Acta Metall Sin, 2015, 51(2): 169-177.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2014.00276      或      https://www.ams.org.cn/CN/Y2015/V51/I2/169

图9  不同尺寸粒子影响再结晶形核和长大过程模型图
图1  合金板材拉伸试样示意图
图2  3种合金沿不同方向的工程应力-应变曲线
图3  3种合金沿3个方向的力学性能
图4  3种合金经加工热处理后的显微组织
图5  1号和3号合金均匀化后基体内析出相的形貌和EDS分析
图6  3号合金由4 mm冷轧至1 mm的TEM像
图7  3种合金固溶淬火态晶粒取向的EBSD分析及尺寸分布
图8  3种合金固溶处理后的取向分布函数(ODF)图
表1  实验Al-Mg-Si-Cu合金的化学成分
表2  3种固溶态合金所含再结晶织构及其体积分数
[1] Miller W S, Zhuang L, Bottema J, Wettebrood A J, De S P, Haszler A, Vieregge A. Mater Sci Eng, 2000; A280: 37
[2] Burger G B, Gupta A K, Jeffrey P W, Lloyd D J. Mater Charact, 1995; 35(1): 23
[3] Engler O, Hirsch J. Mater Sci Forum, 1996; 217: 479
[4] Hirsch J, Al-Samman T. Acta Mater, 2013; 61: 818
[5] Ma M T. Iron Steel, 2001; 36(8): 64 (马鸣图. 钢铁, 2001; 36(8): 64)
[6] Esmaeili S, Lloyd D J. Acta Mater, 2005; 53: 5257
[7] Miki Y, Koyama K, Noguchi O, Ueno Y, Komatsubara T. Mater Sci Forum, 2007; 539: 333
[8] Engler O, Hirsch J. Mater Sci Eng, 2002; A336: 249
[9] Singh R K, Singh A K. Scr Mater, 1998; 38: 1299
[10] Engler O, Kong X W, Yang P. Scr Mater, 1997; 37: 1665
[11] Bennett T A, Petrov R H, Kestens L A I, Zhuang L, De S P. Scr Mater, 2010; 63: 461
[12] Liu Q, Yao Z Y, Godfrey A, Liu W. J Alloys Compd, 2009; 482: 264
[13] Vatne H E, Engler O, Nes E. Mater Sci Technol, 1997; 13: 93
[14] Engler O. Mater Sci Technol, 1996; 12: 859
[15] Engler O, Hirsch J, Lücke K. Acta Mater, 1995; 43: 121
[16] Higginson R L, Aindow M, Bate P S. Mater Sci Eng, 1997; A225: 9
[17] Zhuang L, Bottema J, Kaasenbrood P, Miller W S, De S P. Mater Sci Forum, 1996; 217: 487
[18] Jeniski R A, Thanaboonsombut B, Sanders T H. Metall Mater Trans, 1996; 27A: 19
[19] Cao L Y, Guo M X, Cui H, Cai Y H, Zhang Q X, Hu X Q, Zhang J S. Acta Metall Sin, 2013; 49: 428 (曹零勇, 郭明星, 崔 华, 蔡元华, 张巧霞, 胡晓倩, 张济山. 金属学报, 2013; 49: 428)
[20] Sidor J, Petrov R H, Kestens L A I. Mater Sci Eng, 2010; A528: 413
[21] Inoue H, Takasugi T. Mater Trans, 2007; 48: 2014
[22] Hirsch J, Lücke K. Acta Metall, 1988; 36: 2863
[23] Rollett A, Humphreys F J, Rohrer G S, Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd Ed., Amsterdam: Elsevier Ltd, 2004: 408
[24] Bennett T A, Petrov R H, Kestens L A I. Scr Mater, 2010; 62: 78
[25] Benum S, Nes E. Acta Mater, 1997; 45: 4593
[1] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[2] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[3] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[4] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[5] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[6] 祝佳林,刘施峰,曹宇,柳亚辉,邓超,刘庆. 交叉轧制周期对高纯Ta板变形及再结晶梯度的影响[J]. 金属学报, 2019, 55(8): 1019-1033.
[7] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[8] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[9] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[10] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[11] 刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.
[12] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[13] 邓亚辉,杨银辉,曹建春,钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[14] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[15] 顾晨, 杨平, 毛卫民. 轧制工艺对低牌号无取向电工钢相变退火组织、织构与磁性能的影响[J]. 金属学报, 2019, 55(2): 181-190.