Please wait a minute...
金属学报  2014, Vol. 50 Issue (9): 1102-1108    DOI: 10.11900/0412.1961.2014.00064
  论文 本期目录 | 过刊浏览 |
PtAl2单相涂层的高温抗氧化性能及失效机制研究
柳泉, 阳颖飞, 鲍泽斌, 朱圣龙, 王福会
中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
OXIDATION PROPERTY AND FAILURE MECHANISM OF A SINGLE PHASE PtAl2 COATING
LIU Quan, YANG Yingfei, BAO Zebin, ZHU Shenglong, WANG Fuhui
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(2725 KB)   HTML
摘要: 在镍基铸造高温合金K38G上采用脉冲电镀的方法沉积Pt镀层, 通过分步加热粉末包埋渗Al处理后, 获得表层为单相PtAl2, 内层为β-NiAl的Pt-Al涂层. 分别对单相PtAl2涂层进行1100 ℃静态氧化及循环氧化测试, 并分析涂层在2种氧化条件下的氧化行为及失效机制. 结果表明, 单相PtAl2涂层表现出良好的抗静态氧化能力, 初期快速增重主要来自于θ-Al2O3的生成, 很快θ-Al2O3转变为α-Al2O3且增重趋于平缓. 但是, 单相PtAl2涂层的抗循环氧化能力较差, 循环氧化过程中产生的热应力会导致部分区域PtAl2层剥离或脱落, 继而引发涂层过早失效. 因此, 单相PtAl2涂层不适用于高温负载服役环境, 其在循环氧化过程中的失效和退化主要来自于PtAl2层剥落以及剥落区附近β-NiAl层Al元素的快速消耗.
关键词 镍基高温合金Pt-Al涂层热重分析静态氧化循环氧化    
Abstract:Pt-modified aluminide coating has attracted great attention due to its advantage of the integrated property in resisting both high temperature oxidation and hot corrosion. By the presence of Pt, the spallation trend of the grown oxide scale and the detrimental effect of S can be restrained at a very low level. Besides, Pt could promote α-Al2O3 formation and stabilize β-NiAl phase. Thus Pt-modified aluminide (Pt-Al) coating has been widely used in some crucial applications requiring reliability and extended service life. There are mainly PtAl2, β-(Ni, Pt)Al and γ/γ ′-NiPtAl phases existing inside Pt-Al coating. In this work, a single phase PtAl2 coating was prepared on a Ni-based K38G superalloy through pulse-electroplating of Pt and pack aluminization under stepped heating mode. At 1100 ℃ , the isothermal oxidation behavior of the single phase PtAl2 coating was evaluated by thermogravimetric analysis (TGA). Cyclic oxidation test of the PtAl2 coating was performed within a vertical muffle furnace at the same temperature. The results indicate that the singular PtAl2 coating possesses quite good isothermal oxidation resistance. However, its resistance against cyclic oxidation is very poor. The cyclic stress induced by repeated heating and cooling has caused visible detachment of PtAl2 coating layer, and the spallation of PtAl2 in further would lead to a premature failure of the whole coating system. Partial spallation of PtAl2 layer, including undesirable consumption of Al inside β-NiAl nearby the spallation acts the main reason responsible for the final failure. Accordingly, it is not appropriate to apply single phase PtAl2 coating in the high temperature services involving stress and load. The degradation mechanism of the singular PtAl2 coating is investigated by discussing the stress generated from cyclic heating and cooling.
Key wordsNi-based superalloy    Pt-Al coating    thermogravimetric analysis (TGA)    isothermal oxidation    cyclic oxidation
    
ZTFLH:  TG174.44  
基金资助:* 国家自然科学基金项目51301184, 国家重点基础研究发展计划项目2012CB625100和国家高技术研究发展计划项目2012AA03A512资助
Corresponding author: Correspondent: BAO Zebin, associate professor, Tel: (024)23881473, E-mail: zbbao@imr.ac.cn     E-mail: zbbao@imr.ac.cn
作者简介: 柳 泉, 男, 1981年生, 博士

引用本文:

柳泉, 阳颖飞, 鲍泽斌, 朱圣龙, 王福会. PtAl2单相涂层的高温抗氧化性能及失效机制研究[J]. 金属学报, 2014, 50(9): 1102-1108.
LIU Quan, YANG Yingfei, BAO Zebin, ZHU Shenglong, WANG Fuhui. OXIDATION PROPERTY AND FAILURE MECHANISM OF A SINGLE PHASE PtAl2 COATING. Acta Metall Sin, 2014, 50(9): 1102-1108.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2014.00064      或      https://www.ams.org.cn/CN/Y2014/V50/I9/1102

[1] Padture N P, Gell M, Jordan E H. Science, 2002; 296: 280
[2] Cape T. US Pat, 3102004, 1963
[3] Boone D H, Deb P, Purivs L I, Rigney D V. J Vac Sci Technol, 1985; 3: 2557
[4] Boone D H, Streiff R. J Vac Sci Technol, 1985; 3: 2578
[5] Deb P, Boone D H, Manley T F. J Vac Sci Technol, 1987; 5: 3366
[6] Bai L X, Lou H Y, Wu W T. Mater Prot, 1988; 1: 11 (白林祥, 楼翰一, 吴维弢. 材料保护, 1988; 1: 11)
[7] Bai L X, Wu W T. Precious Met, 1995; 16: 24 (白林祥, 吴维弢. 贵金属, 1995; 16: 24)
[8] Liu G, Niu Y, Wang W, Wu W T. J Chin Soc Corros Prot, 2001; 21: 54 (刘 刚, 牛 焱, 王 文, 吴维弢. 中国腐蚀与防护学报, 2001; 21: 54)
[9] Das D K, Singh V, Joshi S V. Metall Mater Trans, 2000; 31A: 2037
[10] Das D K, Singh V, Joshi S V. Oxid Met, 2002; 57: 245
[11] Vialas N, Monceau D. Surf Coat Technol, 2006; 201: 3846
[12] Angenete J, Stiller K. Surf Coat Technol, 2002; 150: 107
[13] Angenete J, Stiller K, Bakchinova E. Surf Coat Technol, 2004; 176: 272
[14] Hong S J, Kim Y D, Lee G H, Cho I S, Lee C S, Kang S G. Intermetallics, 2014; 46: 65
[15] Hopkin N, Wilson L F. Platinum Met Rev, 1960; 4: 56
[16] Shi G M, Zhang Z L, Shi F L, Yan X F. Mater Heat Treat, 2012; 41: 159 (施国梅, 张尊礼, 史凤玲, 闫秀芬. 材料热处理技术, 2012; 41: 159)
[17] Gleeson B, Wang W, Hayashi S, Sordelet D J. Mater Sci Forum, 2004; 461-464: 213
[18] Hayashi S, Wang W, Sordelet D J, Gleeson B. Metall Mater Trans, 2005; 36A: 1769
[19] Lou H Y, Wang F H, Xia B J, Zhang L X. Corros Sci Prot Technol, 1993; 5: 101 (楼翰一, 王福会, 夏邦杰, 张立新. 腐蚀科学与防护技术, 1993; 5: 101)
[20] Lou H Y, Wang F H, Zhu S L, Xia B J, Zhang L X. Surf Coat Technol, 1994; 63: 105
[21] Benoist J, Badawi K F, Malié A, Ramade C. Surf Coat Technol, 2005; 194: 48
[22] Wright P K. Mater Sci Eng, 1998; A245: 191
[23] Preis W, Sitte W. Solid State Ionics, 2008; 179: 765
[24] Chung Y C, Kim C K, Wuensch B J. J Appl Phys, 2000; 87: 2747
[25] Wen M, Jiang D H, Chen Z Q, Li Y Q, Zhang J M, Zhang K H, Hua W M. Precious Met, 2010; 31: 16 (闻 明, 姜东慧, 陈志全, 李燕琼, 张俊敏, 张昆华, 华伟明. 贵金属, 2010; 31: 16)
[26] Bao Z B, Wang Q M, Li W Z, Liu X, Gong J, Xiong T Y, Sun C. Corros Sci, 2009; 51: 860
[27] Bao Z B, Wang Q M, Jiang S M, Gong J, Sun C. Corros Sci, 2008; 50: 2372
[28] Moretto P, Bressers J, Arrell D J. Mater Sci Eng, 1999; A272: 310
[1] 张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.
[2] 蒋成洋, 阳颖飞, 张正义, 鲍泽斌, 朱圣龙, 王福会. 一种Zr改性双相PtAl2+(Ni, Pt)Al涂层的制备及热腐蚀行为研究[J]. 金属学报, 2018, 54(4): 581-590.
[3] 任维鹏, 李青, 黄强, 肖程波, 何利民. 定向凝固镍基高温合金DZ466表面CoAl涂层的氧化及组织演变[J]. 金属学报, 2018, 54(4): 566-574.
[4] 徐超, 佴启亮, 姚志浩, 江河, 董建新. 晶界氧化对GH4738高温合金疲劳裂纹扩展的作用[J]. 金属学报, 2017, 53(11): 1453-1460.
[5] 胡松松,刘林,崔强伟,黄太文,张军,傅恒志. 镍基高温合金定向凝固过程中的汇聚型双晶竞争生长*[J]. 金属学报, 2016, 52(8): 897-904.
[6] 张思倩,王栋,王迪,彭建强. Re对一种定向凝固镍基高温合金微观组织的影响*[J]. 金属学报, 2016, 52(7): 851-858.
[7] 彭新, 姜肃猛, 孙旭东, 宫骏, 孙超. 梯度NiCoCrAlYSi涂层的循环氧化及热腐蚀行为*[J]. 金属学报, 2016, 52(5): 625-631.
[8] 孙文,秦学智,郭建亭,楼琅洪,周兰章. 铸造镍基高温合金中初生MC碳化物的退化过程和机理*[J]. 金属学报, 2016, 52(4): 455-462.
[9] 谢君, 于金江, 孙晓峰, 金涛. K416B镍基铸造高温合金的700 ℃高周疲劳行为*[J]. 金属学报, 2016, 52(3): 257-263.
[10] 侯介山,郭建亭,袁超,周兰章. 一种抗热腐蚀铸造镍基高温合金中σ相的析出及回溶*[J]. 金属学报, 2016, 52(2): 168-176.
[11] 张北江,赵光普,张文云,黄烁,陈石富. 高性能涡轮盘材料GH4065及其先进制备技术研究[J]. 金属学报, 2015, 51(10): 1227-1234.
[12] 孙文, 秦学智, 郭建亭, 楼琅洪, 周兰章. (W+Mo)/Cr比对铸造镍基高温合金时效组织和持久性能的影响[J]. 金属学报, 2015, 51(1): 67-76.
[13] 杨金侠, 孙元, 金涛, 孙晓峰, 胡壮麒. 一种细晶铸造镍基高温合金的组织与力学性能*[J]. 金属学报, 2014, 50(7): 839-844.
[14] 孙文, 秦学智, 郭永安, 郭建亭, 楼琅洪, 周兰章. Nb/Ti比对铸造镍基高温合金长期时效组织演化的影响*[J]. 金属学报, 2014, 50(6): 744-752.
[15] 马坪, 吴二冬, 李武会, 孙凯, 陈东风. Ti0.7Zr0.3(Cr1-xVx)2合金的结构和贮氢性能*[J]. 金属学报, 2014, 50(4): 454-462.