Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (4): 425-439    DOI: 10.11900/0412.1961.2014.00299
Current Issue | Archive | Adv Search |
DING Jie1, 2, ZHANG Zhiming1, 2, WANG Jianqiu1, 2, HAN En-Hou1, 2, TANG Weibao3, 4, ZHANG Maolong3, 4, SUN Zhiyuan3, 4
1 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016; 2 Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016; 3 Shanghai Electric Nuclear Power Equipment Co. Ltd., Shanghai 201306; 4 Shanghai Research Center for Weld and Detection Engineering Technique of Nuclear Equipment, Shanghai 201306
Download:  HTML  PDF(20355KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The dissimilar metal weld joint (DMWJ) in primary water system of pressurized water reactors (PWRs) has been proven to be a vulnerable component owing to its proneness to different type of flaws. Thus, maintaining integrity of such joint in case of defect presence is of great importance to the design and safe management of nuclear power plants (NPPs). For a reliable integrity analysis of DMWJ, it is essential to understand the microscopic characteristics in all regions of the joint. In this work, OM, TEM, SEM, durometer, AFM, MFM and SKPFM were utilized to investigate the microstructure, micro-hardness and the distribution of main elements, grain boundary characteristic and residual strain in the A508/52M/316L DMWJ that used for connecting the pipe safe-end and the nozzle of reactor pressure vessel in PWRs, and a comparative analysis about the microstructure and property along the radical direction of the DMWJ was obtained. The results showed that there was no region that differed from the other part of the weldment in terms of the microstructure and micro-hardness dramatically. A layer of fine grain resulting from unmelted filler metal was found in the backing weld part of the joint. The residual strain in the heat affected zone (HAZ) of 316L was higher than that in other regions. Meanwhile, drastic variations in the microstructure, chemical composition distribution and grain boundary character distribution (GBCD) in both the 316L/52Mw and the 52Mb/A508 interface regions were observed. The analyses using TEM and MFM test showed that a large number of chromium and molybdenum-rich precipitates particles distributed both along the grain boundaries and inside grains in the 316L base metal, which were identified to be precipitates with complex elementary composition rather than the normal string delta ferrite in 316L austenitic stainless steel. The SKPFM test result indicated that these precipitates were more prone to be corroded than the base metal. Therefore, further investigation about the cause of deformation and the impacts to the corrosion resistance, particularly the stress corrosion cracking (SCC) sensitivity of the precipitates needs to be carried out.
Key words:  dissimilar metal welding      microstructure      micro-hardness      chemical composition distribution      grain boundary character      residual strain     
Published:  01 May 2015
Fund: ;
Corresponding Authors:  Correspondent: WANG Jianqiu, professor, Tel: (024)23893723, E-mail:     E-mail:

Cite this article: 


URL:     OR

  Macro-morphology (a) and sampling scheme (b) of DMWJ (Positions 1 and 8 represent the inner wall and outer wall of the joint, respectively)
  OM images of weld alloy 52Mw (a) and buttering alloy 52Mb (b) in the DMWJ
  OM images of sample in position 4 in the DMWJ weld (a) and the fine equiaxed grains at the backing weld region of sample in position 3 (b) (The arrow in Fig.3b indicates the fine equiaxed grains)
  OM image of the cladding on the surface of A508 inner wall
  OM images of 316L base metal (a) and precipitate morphology (b)
  SEM image (a), MFM image (b) and Volta potential map (c) on the surface area of large precipitate particle in 316L base metal and a Volta potential profile along a line as indicated in Fig.6c (d)
  SEM image (a), TEM image (b) and EDS line scanning curves in Fig.7b (c) of small precipitate particle in the 316L base metal (The inset in Fig.7b shows the SAED pattern)
  OM image of the heat affected zone (HAZ) in 316LSS
  OM images of A508 base metal with low (a) and high (b) carbon contents
  OM images of the HAZ in the A508 (a), fusion zone with ferrite and coarse grain zone with martensite and bainite (b), fine grain zone with ferrite and fine matensite (c) and tempered zone (d) (I—fusion zone, II—coarse grain zone, III—fine grain zone, IV—tempered zone)
  OM image of A508 HAZ adjacent to the cladding in the inner wall
  Microstructure of 316L/52Mw fusion boundary and the unmixed zone
  OM images of the 52Mb/A508 fusion boundary (a), Type-I and Type-II boundaries (b)
  Micro-hardness distributions in the joint of inner wall sample in position 1 (a), middle part sample in position 5 (b), outer wall sample in position 8 (c) and HAZ of A508 (d) (FB—fusion boundary)
  EDS line scan across the 316L/52Mw FB without (a) and with (b) unmixed zone (UZ) of sample in position 4 (TZ—transition zone)
  EDS line scan across the 52Mb/A508 fusion boundary without (a) and with (b) Type-I and Type-II boundaries of sample in position 4
  EBSD images of grain boundary character distribution of the 316L/52Mw fusion boundary region (a1~a7: inner wall, b1~b7: backing weld, c1~c7: outer wall
   1, 2, 3 indicate the areas of 316L that are 7, 3, 1 mm apart from the fusion boundary, respectively
   4 indicates the fusion boundary area
   5, 6, 7 indicate the areas of 52Mw that are 1, 3, 7 mm apart from the fusion boundary respectively
   black, blue and red lines represent the random high angle grain boundary (RGB), low angle grain boundary (LGB) and coincidence site lattice grain boundary (CSL), respectively)
  Grain boundary character distribution (GBCD) across the 316L/52Mw fusion boundary at inner wall (a), backing weld (b) and outer wall (c) regions
[1] Han E H, Wang J Q, Wu X Q, Ke W. Acta Metall Sin, 2010; 46: 1379 (韩恩厚, 王俭秋, 吴欣强, 柯 伟. 金属学报, 2010; 46: 1379)
[2] Joseph A, Rai S K, Jayakumar T, Murugan N. Int J Pressure Vessels Piping, 2006; 82: 700
[3] Seifert H P, Ritter S, Shoji T. J Nucl Mater, 2008; 378: 197
[4] Wang H T, Wang G Z, Xuan F Z, Tu S T. Eng Failure Analysis, 2013; 28: 134
[5] Peng Q J, Xue H, Hou J, Sakaguchi K, Takeda Y, Kuniya J, Shoji T. Corros Sci, 2011; 53: 4309
[6] Hou J, Peng Q J, Kuniya J, Shoji T, Wang J Q, Han E H, Ke W. J Mater Sci, 2010; 397: 109
[7] Li G F, Congleton J. Corros Sci, 2000; 42: 1005
[8] Meng F J, Wang J Q, Han E H, Shoji T, Ke W. Acta Metall Sin, 2011; 47: 839 (孟凡江, 王俭秋, 韩恩厚, 庄子哲雄, 柯 伟. 金属学报, 2011; 47: 839)
[9] Bowerman B S, Czajkowski C J, Roberts T C, Neal C. Mater Charact, 1999; 43: 347
[10] Li G F, Li G J, Fang K W, Peng J, Yang W. Acta Metall Sin, 2011; 47: 797 (李光福, 李冠军, 方可伟, 彭 君, 杨 武. 金属学报, 2011; 47: 797)
[11] Wang H T, Wang G Z, Xuan F Z, Liu F Z, Tu S T. Mater Sci Eng, 2013; A568: 108
[12] Choi K J, Kim J J, Lee B H, Bahn C B, Kim J H. J Nucl Mater, 2013; 441: 493
[13] Hou J, Peng Q J, Lu Z P, Shoji T, Wang J Q, Han E H, Ke W. Corros Sci, 2010; 52: 3949
[14] Hanninen H, Brederholm A, Toivonen A. 15th Int Conf on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Colorado Springs: TMS, 2011: 197
[15] Sathirathinda N, Gubner R, Pan J, Kivisakk U. Electrochem Solid-State Lett, 2008; 11: C41
[16] Kasper J S. Acta Metall, 1954; 2: 456
[17] Michalska J, Sozanska M. Mater Charact, 2006; 56: 355
[18] Popov A A, Bannikova A S, Belikov S V. Phys Met Metall, 2009; 108: 586
[19] Chun E J, Baba H, Nishimoto K, Saida K. Mater Charact, 2013; 86: 152
[20] Escriba D M, Materna-Morris E, Plaut R L, Padilha A F. Mater Charact, 2009; 60: 1214
[21] Martin D S, Rivera Diaz del Castillo P E J, Peekstok E van del Zwaag S. Mater Charact, 2007; 58: 455
[22] Lai J K L, Meshukat M. Met Sci, 1978; 9: 416
[23] Falata L, Svoboda M, Vyrostkova A, Petryshynets I, Sopko M. Mater Charact, 2012; 72: 15
[24] Naffakh H, Shamanian M, Ashrafizadeh F. J Mater Process Technol, 2009; 209: 3628
[25] Nelson T W, Lippold J C, Mills M J. Sci Technol Weld Joining, 1998; 77: 249
[26] Rowe M D, Nelson T W, Lippold J C. Sci Technol Weld Joining, 1999; 78: 31
[27] Srinivasan P B, Muthupandi V, Dietzel W, Sivan V. Mater Des, 2006; 27: 182
[28] Hou J, Peng Q J, Shoji T, Wang J Q, Ke W, Han E H. Acta Metall Sin, 2010; 46: 1258 (侯 娟, 彭群家, 庄子哲雄, 王俭秋, 柯 伟, 韩恩厚. 金属学报, 2010; 46: 1258)
[29] Asami K, Sakai T. Trans Iron Steel Inst Jpn, 1981; 21: B269
[30] Nelson T W, Lippold J C, Mills M J. Sci Technol Weld Joining, 1999; 78: 329
[31] Nelson T W, Lippold J C, Mills M J. Sci Technol Weld Joining, 2000; 79: 267
[32] Hou J, Peng Q J, Takeda Y, Kuniya J, Shoji T, Wang J Q, Han E H, Ke W. J Mater Sci, 2010; 45: 5332
[33] Wang H T. PhD Dissertation, East China University of Science and Technology, Shanghai, 2013 (王海涛. 华东理工大学博士学位论文, 上海, 2013)
[34] Naffakh H, Shamanian M, Ashrafizadeh F. J Mater Process Technol, 2009; 209: 3628
[35] Gertsman V Y, Tangri K, Valiev R Z. Acta Metall Mater, 1994; 42: 1785
[36] Gertsman V Y, Bruemmer S M. Acta Mater, 2001; 49: 1589
[37] Lehockey E M, Brennenstuhl A M, Thompson I. Corros Sci, 2004; 46: 2383
[38] Pan Y, Adams B L, Olson T, Panayotou N. Acta Mater, 1996; 44: 4685
[39] Lee H T, Wu J L. Corros Sci, 2009; 51: 733
[40] Qiao D, Zhang W, Pan T Y, Crooker P, David S, Feng Z. Sci Technol Weld Joining, 2013; 92: 624
[1] Jinyao MA,Jin WANG,Yunsong ZHAO,Jian ZHANG,Yuefei ZHANG,Jixue LI,Ze ZHANG. Investigation of In Situ 1150 High Temperature Deformation Behavior and Fracture Mechanism of a Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(8): 987-996.
[2] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[3] Sensen HUANG,Yingjie MA,Shilin ZHANG,Min QI,Jiafeng LEI,Yaping ZONG,Rui YANG. Influence of Alloying Elements Partitioning Behaviors on the Microstructure and Mechanical Propertiesin α+β Titanium Alloy[J]. 金属学报, 2019, 55(6): 741-750.
[4] Qiaomu LIU,Shunzhou HUANG,Fang LIU,Yan YANG,Hongqiang NAN,Dong ZHANG,Wenru SUN. Effect of Boron Content on Microstructure Evolution During Solidification and Mechanical Properties of K417G Alloy[J]. 金属学报, 2019, 55(6): 720-728.
[5] Chunbo LAN,Jianeng LIANG,Yuanxia LAO,Dengfeng TAN,Chunyan HUANG,Xianzhong MO,Jinying PANG. Anomalous Thermal Expansion Behavior of Cold-RolledTi-35Nb-2Zr-0.3O Alloy[J]. 金属学报, 2019, 55(6): 701-708.
[6] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[7] Jianxiang DING,Wubian TIAN,Dandan WANG,Peigen ZHANG,Jian CHEN,Zhengming SUN. Arc Erosion and Degradation Mechanism ofAg/Ti2AlC Composite[J]. 金属学报, 2019, 55(5): 627-637.
[8] Tongbang AN,Jinshan WEI,Jiguo SHAN,Zhiling TIAN. Influence of Shielding Gas Composition on Microstructure Characteristics of 1000 MPa Grade Deposited Metals[J]. 金属学报, 2019, 55(5): 575-584.
[9] Ping LI, Quan LIN, Yufeng ZHOU, Kemin XUE, Yucheng WU. TEM Analysis of Microstructure Evolution Process of Pure Tungsten Under High Pressure Torsion[J]. 金属学报, 2019, 55(4): 521-528.
[10] Dechun REN, Huhu SU, Huibo ZHANG, Jian WANG, Wei JIN, Rui YANG. Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy[J]. 金属学报, 2019, 55(4): 480-488.
[11] Yaohong LIU,Zhaohui WANG,Ke LIU,Shubo LI,Wenbo DU. Effects of Er on Hot Cracking Susceptibility of Mg-5Zn-xEr Magnesium Alloys[J]. 金属学报, 2019, 55(3): 389-398.
[12] Zhaozhao Lü,Yufei ZU,Jianjun SHA,Yuqiang XIAN,Wei ZHANG,Ding CUI,Conglin YAN. Fabrication and Mechanical Properties of Carbon Fiber-Reinforced Aluminum Matrix Compositeswith Cu Interphase[J]. 金属学报, 2019, 55(3): 317-324.
[13] Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility[J]. 金属学报, 2019, 55(2): 191-201.
[14] Yantao YAO, Liqing CHEN, Wenguang WANG. Damping Capacities of (B4C+Ti) Hybrid Reinforced Mg and AZ91D Composites Processed by In Situ Reactive Infiltration Technique[J]. 金属学报, 2019, 55(1): 141-148.
[15] Dong PAN, Yuguang ZHAO, Xiaofeng XU, Yitong WANG, Wenqiang JIANG, Hong JU. Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel[J]. 金属学报, 2018, 54(9): 1245-1252.
[1] . [J]. Acta Metall Sin, 2003, 39(4): 395 -398 .
[2] . [J]. Acta Metall Sin, 2003, 39(4): 351 -354 .
[3] . [J]. Acta Metall Sin, 2003, 39(4): 355 -358 .
[4] . [J]. Acta Metall Sin, 2003, 39(4): 359 -363 .
[5] . [J]. Acta Metall Sin, 2003, 39(4): 364 -368 .
[6] . [J]. Acta Metall Sin, 2003, 39(4): 414 -418 .
[7] . [J]. Acta Metall Sin, 2003, 39(4): 419 -425 .
[8] . [J]. Acta Metall Sin, 2005, 41(5): 463 -470 .
[9] ZHANG Xiaoqing; SUN Yongqing; ZHANG Zheng. Recognition of Metal Fracture Surface Morphologies Based on the Fuzzy Texture Spectrum[J]. Acta Metall Sin, 2004, 40(10): 1018 -1022 .
[10] . [J]. Acta Metall Sin, 2004, 40(11): 1183 -1188 .