Please wait a minute...
金属学报  2009, Vol. 45 Issue (6): 680-686    
  论文 本期目录 | 过刊浏览 |
低碳钢中晶界铁素体/原奥氏体界面对贝氏体转变的影响
崔桂彬;郭晖;杨善武;贺信莱
(北京科技大学材料科学与工程学院; 北京 100083)
INFLUENCE OF INTERFACE BETWEEN GRAIN BOUNDARY FERRITE AND PRIOR AUSTENITE ON BAINITE TRANSFORMATION IN A LOW CARBON STEEL
CUI Guibin; GUO Hui; YANG Shanwu; HE Xinlai
School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083
引用本文:

崔桂彬 郭晖 杨善武 贺信莱. 低碳钢中晶界铁素体/原奥氏体界面对贝氏体转变的影响[J]. 金属学报, 2009, 45(6): 680-686.
, , , . INFLUENCE OF INTERFACE BETWEEN GRAIN BOUNDARY FERRITE AND PRIOR AUSTENITE ON BAINITE TRANSFORMATION IN A LOW CARBON STEEL[J]. Acta Metall Sin, 2009, 45(6): 680-686.

全文: PDF(3069 KB)  
摘要: 

采用电子背散射衍射 (EBSD) 研究了低碳Fe--C--Mn--Si钢中晶界铁素体/原奥氏体界面对贝氏体形核的影响. 通过两阶段等温热 处理, 获得了晶界铁素体和贝氏体的混合组织. 结合金相观察和取向测量, 发现晶界铁素体与贝氏铁素体之间的界面分为两种, 一种界面不清晰, 一种界面清晰. 分析表明, 在晶界铁素体/贝氏体界面不清晰一侧, 晶界铁素体与原奥氏体保持取向关系, 贝氏体在这类界面形 核生长, 且取向与晶界铁素体保持一致; 在晶界铁素体/贝氏体界面清晰一侧, 晶界铁素体与原奥氏体无取向关系, 且贝氏体与晶界铁素体之间取向差较大.

关键词 低碳钢 晶界铁素体 贝氏体 相界面 形核 取向关系    
Abstract

The low carbon bainitic steels gain increasing attention due to their high strength, high toughness, and good weldability. To improve the toughness and weldability of this kind of steel the carbon concentration is usually deduced to below 0.06% (mass fraction). As a result the hardenability of the steel is decreased and the ferrite usually becomes the first phase formed during the cooling process before the austenite transforms to the bainite. To decrease the nucleation activation barrier the grain boundary ferrite prefers to nucleate at the prior austenite grain boundaries, which are also potential nucleation sites for the bainite. The prior austenite grain boundaries are occupied by the ferrite, meanwhile ferrite/austenite interfaces are formed, which may influence the following nucleation of bainite. To understand the effect of grain boundary ferrite/prior austenite interface on the nucleation of bainite, a low carbon Fe--C--Mn--Si steel was investigated using optical microscope and electron back--scattering diffraction (EBSD). The grain boundary ferrite and bainite were formed during the two--step isothermal holding. By combining metallographic observation with orientation measurement, two kinds of interfaces were found between grain boundary ferrite and bainitic ferrite: one is non--clear interface, and another is clear interface. The analyses show that grain boundary ferrite has nearly the K--S orientation relationship with the prior austenite on the non--clear interface side, at which bainite nucleates and grow with an orientation similar to the grain boundary ferrite, while the grain boundary ferrite has a random orientation relationship with the prior austenite on the clear interface side, and large misorientation exists between bainite and grain boundary ferrite.

Key wordslow carbon steel    grain boundary ferrite    bainite    interface    nucleation    orientation relationship
收稿日期: 2008-11-25     
ZTFLH: 

TG111.5

 
基金资助:

国家自然科学基金项目50601002和教育部留学回国基金项目资助

作者简介: 崔桂彬, 男, 蒙古族, 1983年生, 硕士生

[1] Ohmori Y, Ohtsubo H, Jung Y C, Okaguchi S, Ohtani H. Metall Mater Trans, 1994; 25A: 1981
[2] Furuhara T, Kawata H, Morito S, Miyamoto G, Maki T. Metall Mater Trans, 2008; 39A: 1003
[3] Babu S S, Bhadeshia H K D H. Mater Sci Eng, 1991; A142: 209
[4] Quidort D, Brechet Y J M. Acta Mater, 2001; 49: 4161
[5] Enomoto M, Aaronson H I. Metall Trans, 1987; 18A: 1547
[6] Purdy G R, Brechet Y J M. Acta Metall Mater, 1995; 43:3763
[7] Hillert M. Scr Mater, 2002; 46: 447
[8] Bradley J R, Rigsbee J M, Aaronson H I. Metall Trans, 1977; 8A: 323
[9] Bradley J R, Aaronson H I. Metall Trans, 1977; 8A: 317
[10] Tanaka T, Aaronson H I, EnomotoM. Metall Mater Trans,1995; 26A: 561
[11] Spanos G, Hall M G. Metall Mater Trans, 1996; 27A: 1517
[12] Hackenberg R E, Shiflet G J. Philos Mag, 2003; 83: 3367
[13] Hackenberg R E, Shiflet G J. Mater Charact, 2007; 58: 211
[14] Guo H, Purdy G R, Enomoto M, Aaronson H I. Metall Mater Trans, 2006; 37A: 1721
[15] Oi K, Lux C, Purdy G R. Acta Mater, 2000; 48: 2147
[16] Purdy G R. Acta Metall, 1978; 26: 477
[17] Menon E S K, Aaronson H I. Acta Metall, 1987; 35: 549
[18] Aaronson H I, Spanos G, Masamura R A, Vardiman R G,Moon DW, Menon E S K, Hall M G. Mater Sci Eng, 1995;B32: 107
[19] Guo H, Purdy G R. Metall Mater Trans, 2008; 39A: 950
[20] Zhang M X, Kelly P M. Scr Mater, 2002; 47: 749

[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[3] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[4] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[5] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[6] 朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
[7] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[8] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[9] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[10] 王世宏, 李健, 柴锋, 罗小兵, 杨才福, 苏航. 固溶温度对Fe-19Mn合金的γε相变和阻尼性能的影响[J]. 金属学报, 2020, 56(9): 1217-1226.
[11] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[12] 王占花, 惠卫军, 谢志奇, 张永健, 赵晓丽. 回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响[J]. 金属学报, 2020, 56(11): 1441-1451.
[13] 刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
[14] 杜娟, 程晓行, 杨天南, 陈龙庆, Mompiou Frédéric, 张文征. 奥氏体析出相激发形核的原位TEM研究[J]. 金属学报, 2019, 55(4): 511-520.
[15] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.