Please wait a minute...
金属学报  2018, Vol. 54 Issue (11): 1567-1585    DOI: 10.11900/0412.1961.2018.00356
  材料与工艺 本期目录 | 过刊浏览 |
新一代飞机起落架用马氏体时效不锈钢的研究
杨柯1, 牛梦超1,2, 田家龙3, 王威1
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
3 东北大学冶金学院 沈阳110819
Research and Development of Maraging Stainless Steel Used for New Generation Landing Gear
Ke YANG1, Mengchao U1,2, Jialong AN3, Wei NG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 School of Metallurgy, Northeastern University, Shenyang 110819, China
引用本文:

杨柯, 牛梦超, 田家龙, 王威. 新一代飞机起落架用马氏体时效不锈钢的研究[J]. 金属学报, 2018, 54(11): 1567-1585.
Ke YANG, Mengchao U, Jialong AN, Wei NG. Research and Development of Maraging Stainless Steel Used for New Generation Landing Gear[J]. Acta Metall Sin, 2018, 54(11): 1567-1585.

全文: PDF(11433 KB)   HTML
摘要: 

飞机起落架的性能与飞机的使用安全性密切相关,因此提高飞机起落架用材料的综合性能至关重要。本文通过总结飞机起落架用材料的应用现状和存在的问题,提出了新一代飞机起落架用材料的发展方向,并重点介绍了一种兼顾高强度、高韧性和优异耐蚀性能的新型马氏体时效不锈钢,该钢作为未来起落架用钢的候选材料具有广阔的应用前景。

关键词 飞机起落架马氏体时效不锈钢强韧性耐蚀性    
Abstract

Properties of landing gear are closely related to the service safety of aircraft. Thus, it is essential to improve the comprehensive properties of the material used for landing gear. This article briefly introduces the application status and existing problems of currently used landing gear materials, and then proposes future developing directions of landing gear materials. Finally, a new maraging stainless steel with high strength, high toughness and good corrosion resistance, which can be a promising steel for the new generation landing gear material, is introduced.

Key wordslanding gear    maraging stainless steel    strength and toughness    corrosion resistance
收稿日期: 2018-07-30     
ZTFLH:  TG142.71  
基金资助:资助项目 国家自然科学基金项目No.51201160,国家自然科学基金外国青年学者研究基金项目 No.51750110515,中国科学院创新促进会项目No.2017233和中国科学院金属研究所创新基金重点项目 No.2015-ZD04
作者简介:

作者简介 杨 柯,男,1961年生,研究员

Material Mass fraction of element / % Ultimate tensile strength / MPa Fracture toughness MPam1/2
C Cr Ni Mo Co Others
300M[1,2] 0.39 0.91 1.82 0.42 - Si 1.61, V 0.07, Mn 0.69 1975 84
AerMet100[3,4,5] 0.24 2.99 11.20 1.18 13.40 Si 0.03, Mn<0.01 1965 115
Ferrium S53[8,9] 0.21 10.00 5.50 2.00 14.00 W 1.00,V 0.30 1986 71
S280[10,11] 0.18 12.00 4.00 2.00 14.00 W 1.00 1930 95
表1  飞机起落架用高强度钢的化学成分和力学性能[1~5,8~11]
Material Mass fraction of element / % Ultimate tensile Corrosion
C Cr Ni Mo Co Others strength / MPa resistance
Custom 475[12] 0.01 10.8 8.1 5.1 8.5 Al 1.2 2006 Poor
Custom 465[13] 0.0046 10.7 10.9 0.86 - Ti 1.4, Al 0.04 1779 Normal
1RK91[14] 0.01 12.2 8.99 4.02 - Ti 0.87, Cu 1.95, Al 0.33 1700 Normal
PH13-8Mo[15] 0.03 12.43 8.39 2.15 - Al 0.97, Ti 0.067 1551 Good
17-4 PH[16] 0.023 15.7 4.89 0.21 - Cu 3.65 1399 Good
15-5 PH[17] 0.041 14.8 4.87 - 0.08 Cu 3.10, Nb 0.30 1325 Good
表2  几种典型马氏体时效不锈钢的化学成分、抗拉强度和耐蚀性能[12,13,14,15,16,17]
Steel C Cr Ni Co Mo Ti Al P S Fe
0Co 0.002 12.31 5.42 0.02 5.08 0.41 0.05 0.003 0.004 Bal.
5Co 0.003 12.06 5.13 5.05 5.13 0.38 0.05 0.005 0.003 Bal.
13Co 0.005 12.33 4.55 13.10 5.59 0.41 0.09 0.004 0.002 Bal.
表3  Co含量分别为0、5%和13%的马氏体时效不锈钢的化学成分[30]
图1  不同Co含量的马氏体时效不锈钢在3.5%NaCl溶液浸泡480 h前后样品表面的宏观形貌
图2  不同Co含量的马氏体时效不锈钢在500 ℃ 时效不同时间后的Cr原子分布图[30]
图3  不同Co含量马氏体时效不锈钢在500 ℃时效不同时间的腐蚀电流密度和调幅分解幅度[30]
图4  Cr、Co、Fe在4个模型中的原子位置示意图[30]
图5  Cr原子团簇形成能和Fe原子平均磁矩差变化[30]
Steel C Cr Ni Co Mo Ti Fe
7Co 0.004 12.35 5.28 7.22 3.53 0.46 Bal.
10Co 0.004 12.00 5.35 10.10 3.64 0.41 Bal.
13Co 0.005 12.10 5.40 12.80 3.66 0.43 Bal.
表4  Co含量分别为7%、10%及13%马氏体时效不锈钢的化学成分
图6  不同Co含量马氏体时效不锈钢的显微组织和原始奥氏体晶粒尺寸
图7  不同Co含量马氏体时效不锈钢在520 ℃的时效硬化曲线
图8  固溶态和峰时效态下不同Co含量马氏体时效不锈钢的屈服强度
图9  峰时效态下不同Co含量马氏体时效不锈钢的TEM像和SAED花样
图10  峰时效态7Co马氏体时效不锈钢中元素分布的3DAP分析
Precipitate Steel rmin / nm rmax / nm Nv fp / % rp / nm
Ni3Ti 7Co 1.83 12.68 7.56 4.69 7.15
10Co 1.15 9.52 9.81 4.81 6.33
13Co 1.28 7.55 17.6 4.78 4.83
R 7Co 7.05 22.38 1.02 4.98 12.52
10Co 6.42 20.72 1.18 5.48 12.14
13Co 6.53 18.72 1.37 5.31 11.09
表5  不同Co含量马氏体时效不锈钢中析出相的分布特征统计结果
图11  马氏体时效不锈钢时效过程中析出相的演化机制示意图[43]
图12  不同Co含量马氏体时效不锈钢在520 ℃时效处理1 h后Ni3Ti分布特征的3DAP分析
图13  不同Co含量马氏体时效不锈钢在520 ℃时效0.5 h后的元素分布[44]
图14  不同Co含量马氏体时效不锈钢在520 ℃时效0.5 h后的Ni-Ti团簇尺寸分布特征[44]
图15  13Co钢经520 ℃时效0.5 h后Ni-Ti团簇与基体中元素的3D重建特征[44]
图16  Fe、Ni、Ti、Co在2个合金模型中的原子位置示意图[44]
图17  不同Ni-Ti团簇的构型和能量值计算结果[44]
图18  不同构型的Ni-Ti团簇形成能[44]
图19  不同结构二元合金的形成能[44]
Steel C Cr Ni Co Mo Ti O N Fe
Prototype steel <0.01 12.33 4.55 13.10 5.59 0.41 <0.003 <0.003 Bal.
New steel <0.01 12~13 6~8 5~8 2~4 1~2 <0.003 <0.003 Bal.
表6  新型马氏体时效不锈钢的化学成分
图20  新型钢在固溶态和峰时效态下的微观组织形貌[43]
图21  峰时效态下新型钢中的析出相形貌[43]
图22  不同马氏体时效不锈钢峰时效态试样浸泡144 h前后的形貌[53]
图23  不同马氏体时效不锈钢经过浸泡实验后的表面钝化膜成分随溅射时间的变化[53]
图24  新型钢和商用马氏体时效不锈钢在峰时效状态下的强度-韧性-耐蚀性能关系图[43]
[1] Tomita Y.Development of fracture toughness of ultrahigh strength, medium carbon, low alloy steels for aerospace applications[J]. Int. Mater. Rev., 2000, 45: 27
[2] Sun H M, Li M Q, Liu Y G.Development of processing map coupling grain size for the isothermal compression of 300 M steel[J]. Mater. Sci. Eng., 2014, A595: 77
[3] Hemphill R M, Wert D E, Novotny P M, et al.High strength, high fracture toughness alloy [P]. US Pat, 5268044, 1993
[4] Zhao Z Y.Studing status on the secondary hardening phenomenon in ultra-high strength steels[J]. J. Aeronaut. Mater., 2002, 22(4): 46(赵振业. 超高强度钢中二次硬化现象研究 [J]. 航空材料学报, 2002, 22(4): 46)
[5] Manigandan K, Srivatsan T S, Tammana D, et al.Influence of microstructure on strain-controlled fatigue and fracture behavior of ultra high strength alloy steel AerMet 100[J]. Mater. Sci. Eng., 2014, A601: 29
[6] Liu P, Cai J P, Wang X D, et al.Progress of aircraft landing gear material protection technology[J]. Equip. Environ. Eng., 2011, 8(2): 67(刘鹏, 蔡健平, 王旭东等. 飞机起落架材料防护技术现状及研究进展 [J]. 装备环境工程, 2011, 8(2): 67)
[7] Li B.Methods for improving adhesion of HVOF spraying coatings on 300M steel parts[J]. New Technol. New Process, 2015,(2): 121(李 博. 提高300M钢零件HVOF涂层结合力的方法 [J]. 新技术新工艺, 2015, (2): 121)
[8] Seo J Y, Park S K, Kwon H, et al.Influence of carbide modifications on the mechanical properties of ultra-high-strength stainless steels[J]. Metall. Mater. Trans., 2017, 48A: 4477
[9] Kuehmann C, Tufts B, Trester P.Computational design for ultra high-strength alloy[J]. Adv. Mater. Proc., 2008, 166: 37
[10] Zhong P, Zhang Y Q, Zhong J Y, et al.A new type of structural material S280[J]. Sci. Technol. Rev., 2015, 33(11): 59(钟平, 张业勤, 钟锦岩等. 一种新型结构材料S280 [J]. 科技导报, 2015, 33(11): 59)
[11] Zhan Z W, Sun Z H, Tang Z H.Effect of chemical passivation on properities of S280 ultra high-strength stainless steel[J]. Corros. Prot., 2015, 36: 742(詹中伟, 孙志华, 汤智慧. 化学钝化对S280超高强度不锈钢综合性能的影响 [J]. 腐蚀与防护, 2015, 36: 742)
[12] Martin J W, Kosa T.Ultra-high-strength precipitation-hardenable stainless steel and strip made therefrom [P]. US Pat, 6630103B2, 2003
[13] Ifergane S, Sabatani E, Carmeli B, et al.Hydrogen diffusivity measurement and microstructural characterization of Custom 465 stainless steel[J]. Electrochim. Acta, 2015, 178: 494
[14] H?ttestrand M, Nilsson J O, Stiller K, et al.Precipitation hardening in a 12%Cr-9%N-4%Mo-2%Cu stainless steel[J]. Acta Mater., 2004, 52: 1023
[15] Guo Z, Sha W, Vaumousse D.Microstructural evolution in a PH13-8 stainless steel after ageing[J]. Acta Mater., 2003, 51: 101
[16] Hsiao C N, Chiou C S, Yang J R.Aging reactions in a 17-4 PH stainless steel[J]. Mater. Chem. Phys., 2002, 74: 134
[17] Bajguirani H R H. The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel[J]. Mater. Sci. Eng., 2002, A338: 142
[18] Song Q M.High-performance and aviation application of custom 465? stainless steel[J]. Aeronaut. Manuf. Technol, 2012,(15): 104(宋全明. Custom 465?新型不锈钢的卓越性能及航空应用 [J]. 航空制造技术, 2012, (15): 104)
[19] Long W Q.Development of large size steel Bar 0Cr17Ni4Cu4Nb for large size aero-engine casing[J]. Spec. Steel Technol., 2014, 20(2): 4(隆文庆. 大尺寸机匣用0Cr17Ni4Cu4Nb钢大规格棒材研制 [J]. 特钢技术, 2014, 20(2): 4)
[20] Schnitzer R, Radis R, N?hrer M, et al.Reverted austenite in PH 13-8 Mo maraging steels[J]. Mater. Chem. Phys., 2010, 122: 138
[21] Bhambroo R, Roychowdhury S, Kain V, et al.Effect of reverted austenite on mechanical properties of precipitation hardenable 17-4 stainlesssteel[J]. Mater. Sci. Eng., 2013, A568: 127
[22] Tian J L, Wang W, Yan W, et al.Cracking due to Cu and Ni segregation in a 17-4 PH stainless steel piston rod[J]. Eng. Fail. Anal., 2016, 65: 57
[23] Wert D E, Disabella R P.Strong, corrosion-resistant stainless steel[J]. Adv. Mater. Proc., 2006, 164: 34
[24] Ping D H, Ohnuma M, Hirakawa Y, et al.Microstructural evolution in 13Cr-8Ni-2.5Mo-2Al martensitic precipitation-hardened stainless steel[J]. Mater. Sci. Eng., 2005, A394: 285
[25] Primig S, Stechauner G, Kozeschnik E.Early stages of Cu precipitation in 15-5 PH maraging steel revisited—Part I: Experimental analysis[J]. Steel Res. Int., 2017, 88: 1600084
[26] Andersson M, Stiller K, H?ttestrand M.Comparison of early stages of precipitation in Mo-rich and Mo-poor maraging stainless steels[J]. Surf. Interface Anal., 2007, 39: 195
[27] Schober M, Schnitzer R, Leitner H.Precipitation evolution in a Ti-free and Ti-containing stainless maraging steel[J]. Ultramicroscopy, 2009, 109: 553
[28] Jiao Z B, Luan J H, Zhang Z W, et al.Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels[J]. Acta Mater., 2013, 61: 5996
[29] Decker R F, Floreen S.Maraging Steel Recent Developments and Applications Proceedings of Symposium of TMS Meeting[M]. Huntington: The Minerals, Metal & Materials Society, 1988: 1
[30] Tian J L, Wang W, Yin L C, et al.Three dimensional atom probe and first-principles studies on spinodal decomposition of Cr in a Co-alloyed maraging stainless steel[J]. Scr. Mater., 2016, 121: 37
[31] Zhang L, Xiang Z L, Li X D, et al.Spinodal decomposition in Fe-25Cr-12Co alloys under the influence of high magnetic field and the effect of grain boundary[J]. Nanomaterials, 2018, 8: 578
[32] Miller M K, Russell K F. Comparison of the rate of decomposition in Fe-45%Cr, Fe-45%Cr-5%Ni and duplex stainless steels [J]. Appl. Surf. Sci., 1996, 94-95: 398
[33] Stiller K, H?ttestrand M, Danoix F.Precipitation in 9Ni-12Cr-2Cu maraging steels[J]. Acta Mater., 1998, 46: 6063
[34] Jin S, Mahajan S, Brasen D.Mechanical properties of Fe-Cr-Co ductile permanent magnet alloys[J]. Metall. Mater. Trans., 1980, 11A: 69
[35] Hedstr?m P, Fei H Y, Zhou J, et al.The 475 ℃ embrittlement in Fe-20Cr and Fe-20Cr-X (X=Ni, Cu, Mn) alloys studied by mechanical testing and atom probe tomography[J]. Mater. Sci. Eng., 2013, A574: 123
[36] Ha K F, Zhang H M, Jing K L.An investigation on the mechanism of 475 ℃ embrittlement in high-Cr ferritic stainless steel[J]. Metall. Trans., 1989, 20A: 2563
[37] Park K H, LaSalle J C, Schwartz L H, et al. Mechanical properties of spinodally decomposed Fe-30 wt% Cr alloys: Yield strength and aging embrittlement[J]. Acta Metall., 1986, 34: 1853
[38] Minowa T, Okada M, Homma M.Further studies of the miscibility gap in an Fe-Cr-Co permanent magnet system[J]. IEEE Trans. Magn., 1980, 16: 529
[39] Zhu F, Haasen P, Wagner R.An atom probe study of the decomposition of Fe-Cr-Co permanent magnet alloys[J]. Acta Metall., 1986, 34: 457
[40] Brown J E, Smith G D W. Atom probe studies of spinodal processes in duplex stainless steels and single- and dual-phase Fe-Cr-Ni alloys[J]. Surf. Sci., 1991, 246: 285
[41] Klaver T P C, Drautz R, Finnis M W. Magnetism and thermodynamics of defect-free Fe-Cr alloys[J]. Phys. Rev., 2006, 74B: 094435
[42] Kaneko H, Homma M, Nakamura K, et al.Phase diagram of Fe-Cr-Co permanent magnet system[J]. IEEE Trans. Magn., 1977, 13: 1325
[43] Tian J L, Wang W, Shahzad M B, et al.A new maraging stainless steel with excellent strength-toughness-corrosion synergy[J]. Materials (Basel), 2016, 121: E1293
[44] Tian J L, Shahzad M B, Wang W, et al.Role of Co in formation of Ni-Ti clusters in maraging stainless steel[J]. J. Mater. Sci. Technol., 2018, 34: 1671
[45] Díaz-Ortiz A, Drautz R, F?hnle M, et al.First-principles modeling of magnetism and phase equilibria in binary alloys[J]. J. Alloys Compd., 2004, 369: 27
[46] Kuhnen C A, Bohland-Filho J.Electronic and magnetic structure of ordered Fe-Ni alloys[J]. Braz. J. Phys., 1993, 23: 288
[47] Cheng H P, Ellis D E.First-principles potentials in modeling structure and thermodynamics of Fe-Ni alloys[J]. Phys. Rev., 1989, 39B: 12469
[48] Weston W F, Granato A V.Cubic and hexagonal single-crystal elastic constants of a cobalt-nickel alloy[J]. Phys. Rev., 1975, 12B: 5355
[49] Natarajan Sathiyamoorthy Venkataramanan.Structures of small NixTiy (x+y≤5) clusters: A DFT study[J]. J. Mol. Struct.: THEO CHEM, 2008, 856: 9
[50] Zhu L F, Friák M, Dick A, et al.First-principles study of the thermodynamic and elastic properties of eutectic Fe-Ti alloys[J]. Acta Mater., 2012, 60: 1594
[51] Cacciamani G, Ferro R, Ansara I, et al.Thermodynamic modelling of the Co-Ti system[J]. Intermetallics, 2000, 8: 213
[52] Li Y C, Yan W, Cotton J D, et al.A new 1.9 GPa maraging stainless steel strengthened by multiple precipitating species[J]. Mater. Des., 2015, 82: 56
[53] Tian J L, Wang W, Shahzad M B, et al.Corrosion resistance of Co-containing maraging stainless steel[J]. Acta Metall. Sin.(Engl. Lett.), 2018, 31: 785
[54] Abdelshehid M, Mahmodieh K, Mori K, et al.On the correlation between fracture toughness and precipitation hardening heat treatments in 15-5PH Stainless Steel[J]. Eng. Fail. Anal., 2007, 14: 626
[55] Rack H J, Kalish D.The strength, fracture toughness, and low cycle fatigue behavior of 17-4 PH stainless steel[J]. Metall. Trans., 1974, 5: 1595
[56] Rossi D J, Rossi J D.PH stainless is tougher than you thought[J]. Adv. Mater. Proc., 1987, 131: 45
[1] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[2] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[3] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[4] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[5] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[6] 王雪梅, 殷正正, 于晓彤, 邹玉红, 曾荣昌. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较[J]. 金属学报, 2021, 57(10): 1258-1271.
[7] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[8] 魏琳,王志军,吴庆峰,尚旭亮,李俊杰,王锦程. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7): 840-848.
[9] 梁秀兵, 范建文, 张志彬, 陈永雄. 铝基非晶纳米晶复合涂层显微组织与腐蚀性能研究[J]. 金属学报, 2018, 54(8): 1193-1203.
[10] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[11] 杨海欧, 尚旭亮, 王理林, 王志军, 王锦程, 林鑫. 单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响[J]. 金属学报, 2018, 54(6): 905-910.
[12] 张二林, 王晓燕, 憨勇. 医用多孔Ti及钛合金的国内研究现状[J]. 金属学报, 2017, 53(12): 1555-1567.
[13] 李慕勤, 姚海涛, 魏方红, 刘明达, 王赞, 彭书浩. 医用纯Mg表面多种复合处理膜层的组织结构和体内外性能[J]. 金属学报, 2017, 53(10): 1337-1346.
[14] 彭聪, 张书源, 任玲, 杨柯. 冷却速率对含Cu钛合金显微组织和性能的影响[J]. 金属学报, 2017, 53(10): 1377-1384.
[15] 田家龙,李永灿,王威,严伟,单以银,姜周华,杨柯. 多相强化型马氏体时效不锈钢中的合金元素偏聚效应*[J]. 金属学报, 2016, 52(12): 1517-1526.