101̅2}形变孪晶机制*" /> 101̅2}形变孪晶机制*" /> 101̅2} DEFORMATION TWINNING IN MAGNESIUM" /> Mg的{<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml1-0412-1961-52-10-1267"><mml:mtable frame="none" columnlines="none" rowlines="none"><mml:mtr><mml:mtd><mml:maligngroup></mml:maligngroup><mml:mrow><mml:mn>10</mml:mn><mml:mover accent="true"><mml:mn>1</mml:mn><mml:mtext fontstyle="italic">̅</mml:mtext></mml:mover><mml:mn>2</mml:mn></mml:mrow></mml:mtd></mml:mtr></mml:mtable></mml:math></inline-formula>}形变孪晶机制<sup>*</sup>
Please wait a minute...
金属学报  2016, Vol. 52 Issue (10): 1267-1278    DOI: 10.11900/0412.1961.2016.00369
  本期目录 | 过刊浏览 |
Mg的{101̅2}形变孪晶机制*
单智伟(),刘博宇
西安交通大学材料科学与工程学院金属材料强度国家重点实验室微纳尺度材料行为研究中心, 西安 710049
THE MECHANISM OF {101̅2} DEFORMATION TWINNING IN MAGNESIUM
Zhiwei SHAN(),Boyu LIU
Center for Advancing Materials Performance from the Nanoscale, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

单智伟, 刘博宇. Mg的{101̅2}形变孪晶机制*[J]. 金属学报, 2016, 52(10): 1267-1278.
Zhiwei SHAN, Boyu LIU. THE MECHANISM OF {101̅2} DEFORMATION TWINNING IN MAGNESIUM[J]. Acta Metall Sin, 2016, 52(10): 1267-1278.

全文: PDF(12044 KB)   HTML
  
摘要: 

Mg在室温下的强度和塑性较差, 其根源之一在于Mg的{101?2}形变孪晶在极低的应力下即可形核和扩展, 而且研究表明目前应用于镁合金的时效强化法通常无法显著抑制{101?2}形变孪晶. 尽管对Mg及其合金的力学性能至关重要, 迄今为止, 对{101?2}形变孪晶的形核和扩展的机制仍存在很大争议. 本文首先回顾了有关形变孪晶的定义以及{101?2}孪晶机制的研究历史, 然后着重介绍了最新的基于原位TEM的研究结果: 即Mg的{101?2}形变孪晶迥异于孪晶的经典定义, 它事实上是一种新的室温变形机制, 即塑性的产生可以通过局部的晶胞重构来完成, 而不需要孪晶位错的参与; 由晶胞重构机制所产生的界面为{0002}/{101?0}界面(BP界面), 而且该界面在三维空间呈现梯田状的不规则形貌. 晶胞重构机制迥异于基于位错的孪晶变形机制, 因此基于对该机制进行抑制的设计思路可能是开发未来高强韧镁合金的关键.

关键词 Mg形变孪晶基面-柱面界面强度合金设计    
Abstract

The {101?2} deformation twinning with extremely low activation stress is considered to be one of main reasons for the low strength of magnesium and its alloys at room temperature. In addition, it was found that those generally adopted age-strengthening methods are less effective for magnesium alloys in which postmortem investigation found that {101?2} deformation twinning is still profuse. The formation and propagation mechanism of {101?2} deformation twinning, which are of great importance for designing high strength magnesium alloy, remains elusive or under fervent debate. This paper reviewed the classical definition of deformation twinning, the existing twinning mechanisms, and the recent achievements through in-situ TEM studies on {101?2} deformation twinning. It was found that the {101?2} deformation twinning observed in magnesium are distinct from the classical definition on twinning. It is indeed a brand new room temperature deformation mechanism that can be carried out through unit-cell-reconstruction, without involving twinning dislocations. In addition, the boundaries generated through unit-cell-reconstruction are composed of {0002}/{101?0} interfaces (BP interfaces) and exhibit a terrace-like morphology in 3D space. The unit-cell-reconstruction is essentially different from the traditional dislocation-based twinning mechanism. As a consequence, to develop an effective strengthening strategy based on the nature of this new deformation mechanism would be the key for designing high strength magnesium alloy.

Key wordsMg    deformation twinning    basal/prismatic interface    strength    alloy design
收稿日期: 2016-08-16     
ZTFLH:     
基金资助:* 国家自然科学基金项目51231005和51321003资助
服务
把本文推荐给朋友 101̅2}形变孪晶机制*”的文章,特向您推荐。请打开下面的网址:https://www.ams.org.cn/CN/abstract/abstract24822.shtml" name="neirong"> 101̅2}形变孪晶机制*">
加入引用管理器
E-mail Alert
RSS
作者相关文章
单智伟
刘博宇
图1  fcc晶体中的111孪晶的孪生要素[38]
图 2  微纳尺度纯镁力学测试样品的SEM像[69]
图3  101?2孪晶界与加载方向的夹角[69]
图4  {101?2}孪晶界与加载方向近似平行或垂直[68,69]
图5  具有一定“宽度”的{101?2}孪晶界投影[69]及成因示意图
图6  沿[0001]方向观察到的{101?2} 孪晶界迁移过程的原位录像截图[69]
图7  {101?2}孪晶界的高分辨像[70]
图 8  BP界面的原子尺度成像及界面示意图[39]
图 9  一种可能的晶胞重构路径[68,70]
[1] Yu Q, Zhang J X, Jiang Y Y.Philos Mag Lett, 2011; 91: 757
[2] Barnett M R.Mater Sci Eng, 2007; A464: 1
[3] Wonsiewicz B C, Backofen W A.Trans Metall Soc AIME, 1967; 239: 9
[4] Kelley E W, Hosford W F.Trans Metall Soc AIME, 1968; 242: 5
[5] Yin D L, Wang J T, Liu J Q, Zhao X.J Alloys Compd, 2009; 478: 789
[6] Barnett M R, Davies C H J, Ma X.Scr Mater, 2005; 52: 627
[7] Ball E A, Prangnell P B.Scr Metall, 1994; 31: 111
[8] Yu Q, Wang J, Jiang Y Y, McCabe R J, Li N, Tome C N.Acta Mater, 2014; 77: 28
[9] Price P B.Proc R Soc Lon, 1961; 260A: 251
[10] Li B, Ma Q, McClelland Z, Horstemeyer S J, Whittington W R, Brauer S, Allison P G.Scr Mater, 2013; 69: 493
[11] Yu Q, Jiang Y, Wang J.Scr Mater, 2015; 96: 41
[12] Nie J F, Zhu Y M, Liu J Z, Fang X Y.Science, 2013; 340: 957
[13] Mahajan S, Chin G Y.Acta Metall, 1973; 21: 1353
[14] Christian J W, Mahajan S.Prog Mater Sci, 1995; 39: 1
[15] Raeisinia B, Agnew S R, Akhtar A.Metall Mater Trans, 2011; 42A: 1418
[16] Akhtar A, Teghtsoonian E.Acta Metall, 1969; 17: 1339
[17] Akhtar A, Teghtsoonian E.Acta Metall, 1969; 17: 1351
[18] Nie J F.Scr Mater, 2003; 48: 1009
[19] Liao M, Li B, Horstemeyer M F.Comput Mater Sci, 2013; 79: 534
[20] Nie J F.Metall Mater Trans, 2012; 43A: 3891
[21] Hong S G, Park S H, Lee C S.J Mater Res, 2010; 25: 784
[22] Lou X Y, Li M, Boger R K, Agnew S R, Wagoner R H.Int J Plast, 2007; 23: 44
[23] Xiong Y, Yu Q, Jiang Y.Mater Sci Eng, 2012; A546: 119
[24] Wan G, Wu B L, Zhang Y D, Sha G Y, Esling C.Mater Sci Eng, 2010; A527: 2915
[25] Proust G, Tome C N, Jain A, Agnew S R.Int J Plast, 2009; 25: 861
[26] Chino Y, Kimura K, Mabuchi M.Mater Sci Eng, 2008; A486: 481
[27] Wang Y N, Huang J C.Acta Mater, 2007; 55: 897
[28] Knezevic M, Levinson A, Harris R, Mishra R K, Doherty R D, Kalidindi S R.Acta Mater, 2010; 58: 6230
[29] Kleiner S, Uggowitzer P J.Mater Sci Eng, 2004; A379: 258
[30] Robson J D, Stanford N, Barnett M R.Acta Mater, 2011; 59: 1945
[31] Stanford N, Barnett M R.Mater Sci Eng, 2009; A516: 226
[32] Partridge P G, Roberts E.Acta Metall, 1964; 12: 1205
[33] Clark J B.Acta Metall, 1965; 13: 1281
[34] Clark J B.Acta Metall, 1968; 16: 141
[35] Gharghouri M A, Weatherly G C, Embury J D.Philos Mag, 1998; 78A: 1137
[36] Bilby B A, Crocker A G.Proc R Soc Lon, 1965; 288A: 240
[37] Cahn R W.Adv Phys, 1954; 3: 363
[38] Yu Y N.The Principle of Physical Metallurgy. 2nd Ed., Beijing: Metallurgica Industry Press, 2013: 763
[38] (余永宁. 金属学原理. 第2版, 北京: 冶金工业出版社, 2013: 763)
[39] Liu B Y.PhD Dissertation, Xi'an Jiaotong University, 2015
[39] (刘博宇, 西安交通大学博士学位论文, 2015)
[40] Li B, Zhang X Y.Scr Mater, 2016; 125: 73
[41] Thompson N, Millard D J.Philos Mag, 1952; 43: 422
[42] Capolungo L, Beyerlein I J.Phys Rev, 2008; 78B: 2
[43] Serra A, Bacon D J, Pond R C.Acta Mater, 1999; 47: 1425
[44] Pond R C, Serra A, Bacon D J.Acta Mater, 1999; 47: 1441
[45] Serra A, Bacon D J.Philos Mag, 1996; 73A: 333
[46] Pond R C, Bacon D J, Serra A, Sutton A P.Metall Trans, 1991; 22A: 1185
[47] Serra A, Bacon D J, Pond R C.Acta Metall, 1988; 36: 3183
[48] Serra A, Bacon D J.Philos Mag, 1986; 54A: 793
[49] Braisaz T, Ruterana P, Nouet G, Pond R C.Philos Mag, 1997; 75A: 1075
[50] Wang J, Hoagland R G, Hirth J P, Capolungo L, Beyerlein I J, Tome C N.Scr Mater, 2009; 61: 903
[51] Wang J, Hirth J P, Tome C N.Acta Mater, 2009; 57: 5521
[52] Li B, Ma E.Phys Rev Lett, 2009; 103: 035503
[53] Serra A, Bacon D J, Pond R C.Phys Rev Lett, 2010; 104: 029603
[54] Li B, Ma E.Phys Rev Lett, 2010; 104: 029604
[55] Pond R C, Hirth J P, Serra A, Bacon D J.Mater Res Lett, 2016; 4: 185
[56] Hirth J P, Wang J, Tomé C N.Prog Mater Sci, 2016; 83: 417
[57] Ishii A, Li J, Ogata S.Int J Plast, 2016; 82: 32
[58] Zong H, Ding X, Lookman T, Li J, Sun J.Acta Mater, 2015; 82: 295
[59] Yuasa M, Hayashi M, Mabuchi M, Chino Y.J Phys: Condens Matter, 2014; 26: 015003
[60] Li B, Zhang X Y.Scr Mater, 2014; 71: 45
[61] Li B, McClelland Z, Horstemeyer S J, Aslam I, Wang P T, Horstemeyer M F.Mater Des, 2014; 66(Part B): 575
[62] Barrett C D, El Kadiri H.Acta Mater, 2014; 63: 1
[63] Xu B, Capolungo L, Rodney D.Scr Mater, 2013; 68: 901
[64] Wang J, Yadav S K, Hirth J P, Tomé C N, Beyerlein I J.Mater Res Lett, 2013; 1: 126
[65] Wang J, Liu L, Tomé C N, Mao S X, Gong S K.Mater Res Lett, 2013; 1: 81
[66] Shan Z W.JOM, 2012; 64: 1229
[67] Liu B Y, Li B, Shan Z W.In: Hort N, Mathaudhu S N, Neelameggham N R, Alderman M eds., Magnesium Technology 2013, San Diego: John Wiley & Sons, Inc., 2013: 107
[68] Liu B Y, Wang J, Li B, Lu L, Zhang X Y, Shan Z W, Li J, Jia C L, Sun J, Ma E.Nat Commun, 2014; 5: 3297
[69] Liu B Y, Wan L, Wang J, Ma E, Shan Z W.Scr Mater, 2015; 100:86
[70] Liu B Y, Shan Z-W, Ma E.In: Singh A, Solanki K, Manuel M V, Neelameggham N R eds., Magnesium Technology 2016, Nashville: John Wiley & Sons, Inc., 2016: 199
[71] Zhang X Y, Li B, Wu X L, Zhu Y T, Ma Q, Liu Q, Wang P T, Horstemeyer M F.Scr Mater, 2012; 67: 862
[72] Tu J, Zhang X Y, Wang J, Sun Q, Liu Q, Tomé C N.Appl Phys Lett, 2013; 103: 051903
[73] Sun Q, Zhang X Y, Ren Y, Tu J, Liu Q. Scr Mater, 2014; 90-91: 41
[74] Uchic M D, Dimiduk D M, Florando J N, Nix W D.Science, 2004; 305: 986
[75] Yu Q, Shan Z-W, Li J, Huang X, Xiao L, Sun J, Ma E.Nature, 2010; 463: 335
[76] Jian W W, Cheng G M, Xu W Z, Yuan H, Tsai M H, Wang Q D, Koch C C, Zhu Y T, Mathaudhu S N.Mater Res Lett, 2013; 1: 61
[77] Li B, Yan P F, Sui M L, Ma E.Acta Mater, 2010; 58: 173
[78] Bere A, Chen J, Hairie A, Nouet G, Paumier E.Phys Status Solidi, 2004; 241B: 2482
[1] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[4] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[5] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[6] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[7] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[8] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[9] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[10] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[11] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[12] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[13] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[14] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
[15] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.