101̅2}形变孪晶机制*" /> 101̅2}形变孪晶机制*" /> 101̅2} DEFORMATION TWINNING IN MAGNESIUM" /> Mg的{<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml1-0412-1961-52-10-1267"><mml:mtable frame="none" columnlines="none" rowlines="none"><mml:mtr><mml:mtd><mml:maligngroup></mml:maligngroup><mml:mrow><mml:mn>10</mml:mn><mml:mover accent="true"><mml:mn>1</mml:mn><mml:mtext fontstyle="italic">̅</mml:mtext></mml:mover><mml:mn>2</mml:mn></mml:mrow></mml:mtd></mml:mtr></mml:mtable></mml:math></inline-formula>}形变孪晶机制<sup>*</sup>
Please wait a minute...
金属学报  2016, Vol. 52 Issue (10): 1267-1278    DOI: 10.11900/0412.1961.2016.00369
  本期目录 | 过刊浏览 |
Mg的{101̅2}形变孪晶机制*
单智伟(),刘博宇
西安交通大学材料科学与工程学院金属材料强度国家重点实验室微纳尺度材料行为研究中心, 西安 710049
THE MECHANISM OF {101̅2} DEFORMATION TWINNING IN MAGNESIUM
Zhiwei SHAN(),Boyu LIU
Center for Advancing Materials Performance from the Nanoscale, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
全文: PDF(12044 KB)   HTML
  
摘要: 

Mg在室温下的强度和塑性较差, 其根源之一在于Mg的{101?2}形变孪晶在极低的应力下即可形核和扩展, 而且研究表明目前应用于镁合金的时效强化法通常无法显著抑制{101?2}形变孪晶. 尽管对Mg及其合金的力学性能至关重要, 迄今为止, 对{101?2}形变孪晶的形核和扩展的机制仍存在很大争议. 本文首先回顾了有关形变孪晶的定义以及{101?2}孪晶机制的研究历史, 然后着重介绍了最新的基于原位TEM的研究结果: 即Mg的{101?2}形变孪晶迥异于孪晶的经典定义, 它事实上是一种新的室温变形机制, 即塑性的产生可以通过局部的晶胞重构来完成, 而不需要孪晶位错的参与; 由晶胞重构机制所产生的界面为{0002}/{101?0}界面(BP界面), 而且该界面在三维空间呈现梯田状的不规则形貌. 晶胞重构机制迥异于基于位错的孪晶变形机制, 因此基于对该机制进行抑制的设计思路可能是开发未来高强韧镁合金的关键.

关键词 Mg形变孪晶基面-柱面界面强度合金设计    
Abstract

The {101?2} deformation twinning with extremely low activation stress is considered to be one of main reasons for the low strength of magnesium and its alloys at room temperature. In addition, it was found that those generally adopted age-strengthening methods are less effective for magnesium alloys in which postmortem investigation found that {101?2} deformation twinning is still profuse. The formation and propagation mechanism of {101?2} deformation twinning, which are of great importance for designing high strength magnesium alloy, remains elusive or under fervent debate. This paper reviewed the classical definition of deformation twinning, the existing twinning mechanisms, and the recent achievements through in-situ TEM studies on {101?2} deformation twinning. It was found that the {101?2} deformation twinning observed in magnesium are distinct from the classical definition on twinning. It is indeed a brand new room temperature deformation mechanism that can be carried out through unit-cell-reconstruction, without involving twinning dislocations. In addition, the boundaries generated through unit-cell-reconstruction are composed of {0002}/{101?0} interfaces (BP interfaces) and exhibit a terrace-like morphology in 3D space. The unit-cell-reconstruction is essentially different from the traditional dislocation-based twinning mechanism. As a consequence, to develop an effective strengthening strategy based on the nature of this new deformation mechanism would be the key for designing high strength magnesium alloy.

Key wordsMg    deformation twinning    basal/prismatic interface    strength    alloy design
收稿日期: 2016-08-16      出版日期: 2016-09-19
ZTFLH:     
基金资助:* 国家自然科学基金项目51231005和51321003资助
服务
把本文推荐给朋友 101̅2}形变孪晶机制*”的文章,特向您推荐。请打开下面的网址:http://www.ams.org.cn/CN/abstract/abstract24822.shtml" name="neirong"> 101̅2}形变孪晶机制*">
加入引用管理器
E-mail Alert
RSS
作者相关文章
单智伟
刘博宇

引用本文:

单智伟, 刘博宇. Mg的{101̅2}形变孪晶机制*[J]. 金属学报, 2016, 52(10): 1267-1278.
Zhiwei SHAN, Boyu LIU. THE MECHANISM OF {101̅2} DEFORMATION TWINNING IN MAGNESIUM. Acta Metall, 2016, 52(10): 1267-1278.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00369      或      http://www.ams.org.cn/CN/Y2016/V52/I10/1267

图1  fcc晶体中的111孪晶的孪生要素[38]
图 2  微纳尺度纯镁力学测试样品的SEM像[69]
图3  101?2孪晶界与加载方向的夹角[69]
图4  {101?2}孪晶界与加载方向近似平行或垂直[68,69]
图5  具有一定“宽度”的{101?2}孪晶界投影[69]及成因示意图
图6  沿[0001]方向观察到的{101?2} 孪晶界迁移过程的原位录像截图[69]
图7  {101?2}孪晶界的高分辨像[70]
图 8  BP界面的原子尺度成像及界面示意图[39]
图 9  一种可能的晶胞重构路径[68,70]
[1] Yu Q, Zhang J X, Jiang Y Y.Philos Mag Lett, 2011; 91: 757
[2] Barnett M R.Mater Sci Eng, 2007; A464: 1
[3] Wonsiewicz B C, Backofen W A.Trans Metall Soc AIME, 1967; 239: 9
[4] Kelley E W, Hosford W F.Trans Metall Soc AIME, 1968; 242: 5
[5] Yin D L, Wang J T, Liu J Q, Zhao X.J Alloys Compd, 2009; 478: 789
[6] Barnett M R, Davies C H J, Ma X.Scr Mater, 2005; 52: 627
[7] Ball E A, Prangnell P B.Scr Metall, 1994; 31: 111
[8] Yu Q, Wang J, Jiang Y Y, McCabe R J, Li N, Tome C N.Acta Mater, 2014; 77: 28
[9] Price P B.Proc R Soc Lon, 1961; 260A: 251
[10] Li B, Ma Q, McClelland Z, Horstemeyer S J, Whittington W R, Brauer S, Allison P G.Scr Mater, 2013; 69: 493
[11] Yu Q, Jiang Y, Wang J.Scr Mater, 2015; 96: 41
[12] Nie J F, Zhu Y M, Liu J Z, Fang X Y.Science, 2013; 340: 957
[13] Mahajan S, Chin G Y.Acta Metall, 1973; 21: 1353
[14] Christian J W, Mahajan S.Prog Mater Sci, 1995; 39: 1
[15] Raeisinia B, Agnew S R, Akhtar A.Metall Mater Trans, 2011; 42A: 1418
[16] Akhtar A, Teghtsoonian E.Acta Metall, 1969; 17: 1339
[17] Akhtar A, Teghtsoonian E.Acta Metall, 1969; 17: 1351
[18] Nie J F.Scr Mater, 2003; 48: 1009
[19] Liao M, Li B, Horstemeyer M F.Comput Mater Sci, 2013; 79: 534
[20] Nie J F.Metall Mater Trans, 2012; 43A: 3891
[21] Hong S G, Park S H, Lee C S.J Mater Res, 2010; 25: 784
[22] Lou X Y, Li M, Boger R K, Agnew S R, Wagoner R H.Int J Plast, 2007; 23: 44
[23] Xiong Y, Yu Q, Jiang Y.Mater Sci Eng, 2012; A546: 119
[24] Wan G, Wu B L, Zhang Y D, Sha G Y, Esling C.Mater Sci Eng, 2010; A527: 2915
[25] Proust G, Tome C N, Jain A, Agnew S R.Int J Plast, 2009; 25: 861
[26] Chino Y, Kimura K, Mabuchi M.Mater Sci Eng, 2008; A486: 481
[27] Wang Y N, Huang J C.Acta Mater, 2007; 55: 897
[28] Knezevic M, Levinson A, Harris R, Mishra R K, Doherty R D, Kalidindi S R.Acta Mater, 2010; 58: 6230
[29] Kleiner S, Uggowitzer P J.Mater Sci Eng, 2004; A379: 258
[30] Robson J D, Stanford N, Barnett M R.Acta Mater, 2011; 59: 1945
[31] Stanford N, Barnett M R.Mater Sci Eng, 2009; A516: 226
[32] Partridge P G, Roberts E.Acta Metall, 1964; 12: 1205
[33] Clark J B.Acta Metall, 1965; 13: 1281
[34] Clark J B.Acta Metall, 1968; 16: 141
[35] Gharghouri M A, Weatherly G C, Embury J D.Philos Mag, 1998; 78A: 1137
[36] Bilby B A, Crocker A G.Proc R Soc Lon, 1965; 288A: 240
[37] Cahn R W.Adv Phys, 1954; 3: 363
[38] Yu Y N.The Principle of Physical Metallurgy. 2nd Ed., Beijing: Metallurgica Industry Press, 2013: 763
[38] (余永宁. 金属学原理. 第2版, 北京: 冶金工业出版社, 2013: 763)
[39] Liu B Y.PhD Dissertation, Xi'an Jiaotong University, 2015
[39] (刘博宇, 西安交通大学博士学位论文, 2015)
[40] Li B, Zhang X Y.Scr Mater, 2016; 125: 73
[41] Thompson N, Millard D J.Philos Mag, 1952; 43: 422
[42] Capolungo L, Beyerlein I J.Phys Rev, 2008; 78B: 2
[43] Serra A, Bacon D J, Pond R C.Acta Mater, 1999; 47: 1425
[44] Pond R C, Serra A, Bacon D J.Acta Mater, 1999; 47: 1441
[45] Serra A, Bacon D J.Philos Mag, 1996; 73A: 333
[46] Pond R C, Bacon D J, Serra A, Sutton A P.Metall Trans, 1991; 22A: 1185
[47] Serra A, Bacon D J, Pond R C.Acta Metall, 1988; 36: 3183
[48] Serra A, Bacon D J.Philos Mag, 1986; 54A: 793
[49] Braisaz T, Ruterana P, Nouet G, Pond R C.Philos Mag, 1997; 75A: 1075
[50] Wang J, Hoagland R G, Hirth J P, Capolungo L, Beyerlein I J, Tome C N.Scr Mater, 2009; 61: 903
[51] Wang J, Hirth J P, Tome C N.Acta Mater, 2009; 57: 5521
[52] Li B, Ma E.Phys Rev Lett, 2009; 103: 035503
[53] Serra A, Bacon D J, Pond R C.Phys Rev Lett, 2010; 104: 029603
[54] Li B, Ma E.Phys Rev Lett, 2010; 104: 029604
[55] Pond R C, Hirth J P, Serra A, Bacon D J.Mater Res Lett, 2016; 4: 185
[56] Hirth J P, Wang J, Tomé C N.Prog Mater Sci, 2016; 83: 417
[57] Ishii A, Li J, Ogata S.Int J Plast, 2016; 82: 32
[58] Zong H, Ding X, Lookman T, Li J, Sun J.Acta Mater, 2015; 82: 295
[59] Yuasa M, Hayashi M, Mabuchi M, Chino Y.J Phys: Condens Matter, 2014; 26: 015003
[60] Li B, Zhang X Y.Scr Mater, 2014; 71: 45
[61] Li B, McClelland Z, Horstemeyer S J, Aslam I, Wang P T, Horstemeyer M F.Mater Des, 2014; 66(Part B): 575
[62] Barrett C D, El Kadiri H.Acta Mater, 2014; 63: 1
[63] Xu B, Capolungo L, Rodney D.Scr Mater, 2013; 68: 901
[64] Wang J, Yadav S K, Hirth J P, Tomé C N, Beyerlein I J.Mater Res Lett, 2013; 1: 126
[65] Wang J, Liu L, Tomé C N, Mao S X, Gong S K.Mater Res Lett, 2013; 1: 81
[66] Shan Z W.JOM, 2012; 64: 1229
[67] Liu B Y, Li B, Shan Z W.In: Hort N, Mathaudhu S N, Neelameggham N R, Alderman M eds., Magnesium Technology 2013, San Diego: John Wiley & Sons, Inc., 2013: 107
[68] Liu B Y, Wang J, Li B, Lu L, Zhang X Y, Shan Z W, Li J, Jia C L, Sun J, Ma E.Nat Commun, 2014; 5: 3297
[69] Liu B Y, Wan L, Wang J, Ma E, Shan Z W.Scr Mater, 2015; 100:86
[70] Liu B Y, Shan Z-W, Ma E.In: Singh A, Solanki K, Manuel M V, Neelameggham N R eds., Magnesium Technology 2016, Nashville: John Wiley & Sons, Inc., 2016: 199
[71] Zhang X Y, Li B, Wu X L, Zhu Y T, Ma Q, Liu Q, Wang P T, Horstemeyer M F.Scr Mater, 2012; 67: 862
[72] Tu J, Zhang X Y, Wang J, Sun Q, Liu Q, Tomé C N.Appl Phys Lett, 2013; 103: 051903
[73] Sun Q, Zhang X Y, Ren Y, Tu J, Liu Q. Scr Mater, 2014; 90-91: 41
[74] Uchic M D, Dimiduk D M, Florando J N, Nix W D.Science, 2004; 305: 986
[75] Yu Q, Shan Z-W, Li J, Huang X, Xiao L, Sun J, Ma E.Nature, 2010; 463: 335
[76] Jian W W, Cheng G M, Xu W Z, Yuan H, Tsai M H, Wang Q D, Koch C C, Zhu Y T, Mathaudhu S N.Mater Res Lett, 2013; 1: 61
[77] Li B, Yan P F, Sui M L, Ma E.Acta Mater, 2010; 58: 173
[78] Bere A, Chen J, Hairie A, Nouet G, Paumier E.Phys Status Solidi, 2004; 241B: 2482
[1] 胡宽辉, 毛新平, 周桂峰, 刘静, 王志奋. Si和Mn含量对超高强度热成形钢组织和性能的影响[J]. 金属学报, 2018, 54(8): 1105-1112.
[2] 丁浩, 崔喜平, 许长寿, 李爱滨, 耿林, 范国华, 陈俊锋, 孟松鹤. 连续玄武岩纤维增强铝基层状复合材料的制备与力学特性[J]. 金属学报, 2018, 54(8): 1171-1178.
[3] 王光东, 田妮, 何长树, 赵刚, 左良. DC铸造Al-12Si-0.65Mg-xMn合金中第二相的形成[J]. 金属学报, 2018, 54(7): 1059-1067.
[4] 于晓明, 谭丽丽, 刘宗元, 杨柯, 朱忠林, 李扬德. Ti6Al4V表面生物功能纯Mg薄膜制备及性能研究[J]. 金属学报, 2018, 54(6): 943-949.
[5] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
[6] 季培蓓, 周立初, 周雪峰, 方峰, 蒋建清. 冷拉拔珠光体钢丝的力学性能各向异性研究[J]. 金属学报, 2018, 54(4): 494-500.
[7] 张笑一, 尚海龙, 马冰洋, 李荣斌, 李戈扬. 镀膜Al箔钎料对AlN陶瓷的钎焊[J]. 金属学报, 2018, 54(4): 575-580.
[8] 黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384.
[9] 陈良, 赵国群, 陈高进, 梁赵青, 张存生. LZ91 Mg-Li合金分流模挤压成形过程数值模拟与实验研究[J]. 金属学报, 2018, 54(2): 339-346.
[10] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[11] 冯迪, 张新明, 陈洪美, 金云学, 王国迎. 非等温回归再时效对Al-8Zn-2Mg-2Cu合金厚板组织及性能的影响[J]. 金属学报, 2018, 54(1): 100-108.
[12] 崔荣华, 王歆钰, 董正超, 仲崇贵. Mg1-xZnx合金的弹性和热力学性质的第一性原理研究[J]. 金属学报, 2017, 53(9): 1133-1139.
[13] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[14] 陈懿, 郭明星, 易龙, 袁波, 李高洁, 庄林忠, 张济山. 新型Al-Mg-Si-Cu-Zn合金板材组织、织构和性能的优化调控[J]. 金属学报, 2017, 53(8): 907-917.
[15] 张文奇, 朱海红, 胡志恒, 曾晓雁. AlSi10Mg的激光选区熔化成形研究[J]. 金属学报, 2017, 53(8): 918-926.