Please wait a minute...
金属学报  2019, Vol. 55 Issue (4): 547-554    DOI: 10.11900/0412.1961.2018.00414
  本期目录 | 过刊浏览 |
挤压态GH3625合金冷变形过程中的组织和织构演变
高钰璧1,丁雨田1(),陈建军1,许佳玉1,马元俊1,张东2
1. 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
2. 金川集团股份有限公司镍钴资源综合利用国家重点实验室 金昌 737100
Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy
Yubi GAO1,Yutian DING1(),Jianjun CHEN1,Jiayu XU1,Yuanjun MA1,Dong ZHANG2
1. State Key Laboratory of Advanced and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2. State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization, Jinchuan Group Ltd., Jinchang 737100, China
引用本文:

高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. Acta Metall Sin, 2019, 55(4): 547-554.

全文: PDF(17826 KB)   HTML
摘要: 

采用EBSD技术研究了挤压态GH3625合金冷变形过程中的组织演变、晶界特征分布、位错密度、应力分布及织构演变规律。结果表明,随着冷变形量的增加,晶粒变形程度加大,晶粒形貌由扁平状转变为细条状,晶体转动使得晶界与加载压力轴垂直分布;随着冷变形量的增加,大角度晶界逐渐向小角度晶界转变,孪晶界的比例逐渐增加。随着冷变形量的增加,局部取向差的平均值(θˉL)升高,位错密度增加;同时,晶粒变形均匀性逐渐变好,应力集中分布逐渐向应力均匀分布转变。随着冷变形量的增加,其形变织构的类型基本保持不变,而具有稳定取向的Copper织构{112}<111>的强度略有降低;同时,由不均匀变形产生的Rotated-cube织构{001}<110>的强度降低;此外,形变孪晶的形成导致Goss织构{110}<001>和Brass-R织构{111}<112>的强度降低。

关键词 GH3625合金冷变形形变孪晶位错密度织构演变    
Abstract

GH3625 alloy is a wrought nickel-based superalloy mainly used in aeronautical, aerospace, chemical, nuclear, petrochemical and marine applications industry due to its good combination of mechanical properties and corrosion resistance on prolonged high-temperature exposure to aggressive environments. However, the cold deformation microstructure directly determines the microstructure of the alloy pipe, thereby affecting the performance of the alloy pipe. In this work, the microstructure evolution, grain boundary characteristics distribution, dislocation density, stress distribution and texture evolution of the hot-extruded GH3625 superalloy during cold deformation were investigated by EBSD technique. The results show that the degree of grain deformation increases and the grain morphology changes from flat to thin strip, with the increase of cold deformation. The rotation of the crystal makes the grain boundary perpendicular to the loading pressure axis. With the increase of cold deformation, the high angle grain boundaries (HAGBs) gradually changes to the low angle grain boundaries (LAGBs), and the proportion of twin grain boundary increases gradually. The average of local misorientation (θˉL) increases with the increase of cold deformation, which can reflect the increase of dislocation density. With the increase of cold deformation, the uniformity of grain deformation gradually becomes better, and the stress concentration distribution gradually changes to the stress uniform distribution. With the cold deformation increases, the type of deformation texture remains basically unchanged, while the strength of the Copper texture {112}<111> with stable orientation is slightly reduced. Meanwhile, the Rotated-cube texture {001}<110> generated by inhomogeneous plastic deformation is reduced in strength. In addition, the formation of deformation twin results in a decrease in the strength of the Goss texture {110}<001> and the Brass-R texture {111}<112>.

Key wordsGH3625 alloy    cold deformation    deformation twin    dislocation density    evolution of texture
收稿日期: 2018-09-15     
ZTFLH:  TG146.15  
基金资助:国家重点研发计划项目(No.2017YFA0700703);国家自然科学基金项目(No.51661019);甘肃省科技重大专项项目(No.145RTSA004);镍钴资源综合利用国家重点实验室基金项目(No.301170503)
作者简介: 高钰璧,男,1991年生,博士生
图1  挤压态GH3625合金在冷变形过程中的微观组织及晶界特征分布演变
图2  挤压态GH3625合金在不同冷变形量下的晶粒尺寸分布
图3  挤压态GH3625合金在不同冷变形量下的局部取向差(θL)分布
图4  挤压态GH3625合金不同冷变形量下的局部取向差的分布曲线
图5  挤压态GH3625合金在不同冷变形量下的应力分布
图6  立方晶系常见取向的空间截面图[22]
图7  挤压态GH3625合金冷变形后的晶粒取向分布函数(ODF)截面图
图8  挤压态GH3625合金冷变形后的反极图及取向因子(μ)的反极图
图9  挤压态GH3625合金冷变形后的取向因子(μ)分布
1 Zhang H B. Inconel 625 alloy progress abroad [J]. Spe. Steel Technol., 2000, (3): 69
1 张红斌. 国外Inconel 625合金的进展 [J]. 特钢技术, 2000, (3): 69)
2 Mathew M D, Parameswaran P, Rao K B S. Microstructural changes in alloy 625 during high temperature creep [J]. Mater. Charact., 2008, 59: 508
3 Cortial F, Corrieu J M, Vernot-Loier C. Influence of heat treatments on microstructure, mechanical properties, and corrosion resistance of weld alloy 625 [J]. Metall. Mater. Trans., 1995, 26A: 1273
4 Zou Z H. Development of domestic manufacturing technologies for stainless steel tubes and gap with similar technologies developed overseas [J]. Steel Pipe, 2000, 29(6): 7
4 邹子和. 我国不锈钢管生产技术的进展及其与国外的差距 [J]. 钢管, 2000, 29(6): 7)
5 Zou Z H. Alloy steel pipe cold processing technology abroad [J]. Steel Pipe, 1988, (1): 39
5 邹子和. 国外合金钢管冷加工工艺 [J]. 钢管技术, 1988, (1): 39)
6 Tian D. Development and production of high-temperature alloy seamless tubulars [J]. Steel Pipe, 2002, 31(3): 1
6 田 党. 高温合金无缝管材的研制与生产 [J]. 钢管, 2002, 31(3): 1)
7 Gao Y B, Ding Y T, Meng B, et al. Research and manufacture of short-flow hot extrusion forming and seamless pipe for GH3625 superalloy [A]. High Performance Structural Materials [C]. New York: Springer, 2018: 609
8 Zhao Y X. Cold deformation behaviors of GH625 alloy and their effects on the mechanical properties [J]. J. Mater. Eng., 2000, (9): 36
8 赵宇新. GH625合金的冷变形及其对力学性能的影响 [J]. 材料工程, 2000, (9): 36)
9 Wang Z G, Yang Y J, Tian S X, et al. Influence of cold drawing process on microstructures and tensile properties of alloy GH3625 [J]. J. Iron Steel Res., 2011, (S2): 92
9 王志刚, 杨玉军, 田水仙等. 冷拔变形对GH3625合金组织和性能的影响 [J]. 钢铁研究学报, 2011, (S2): 92)
10 Ding Y T, Gao Y B, Dou Z Y, et al. Study on cold deformation behavior and heat treatment process of GH3625 superalloy tubes [J]. Mater. Rev., 2017, 31(10): 70
10 丁雨田, 高钰璧, 豆正义等. GH3625合金管材冷变形行为及热处理工艺研究 [J]. 材料导报, 2017, 31(10): 70)
11 Ding Y T, Gao Y B, Dou Z Y, et al. Microstructure evolution during intermediate annealing of cold-deformed GH3625 superalloy tubes [J]. Trans. Mater. Heat Treat., 2017, 38(2): 178
11 丁雨田, 高钰璧, 豆正义等. 冷变形GH3625合金管材中间退火过程中的组织演变 [J]. 材料热处理学报, 2017, 38(2): 178)
12 Hertzberg R W. Deformation and Fracture Mechanics of Engineering Materials [M]. 2nd Ed., New York: Wiley, 1983: 169
13 El-Danaf E, Kalidindi S R, Dohertyr R D. Influence of grain size and stacking-fault energy on deformation twinning in fcc metals [J]. Metall. Mater. Trans., 1999, 30A: 1223
14 Zhang Y, Tao N R, Lu K. Effects of stacking fault energy, strain rate and temperature on microstructure and strength of nanostructured Cu-Al alloys subjected to plastic deformation [J]. Acta Mater., 2011, 59: 6048
15 Li Y, Zhang X K, He K J, et al. Effect of stack fault energy on grain refinement of Cu alloy during room temperature deformation and subsequent annealing [J]. Chin. J. Nonferrous Met., 2016, 26: 66
15 李 祎, 张祥凯, 何克坚等. 层错能对铜合金室温变形及退火过程中晶粒细化的影响 [J]. 中国有色金属学报, 2016, 26: 66
16 Meng Y, Ren Q, Ju X H. Evaluation of dislocation density by local grain misorientation in deformed metals [J]. Trans. Mater. Heat Treat., 2014, 35(11): 122
16 孟 杨, 任 群, 鞠新华. 利用局域取向差衡量变形金属中的位错密度 [J]. 材料热处理学报, 2014, 35(11): 122)
17 Kubin L P, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: A few critical issues [J]. Scr. Mater., 2003, 48: 119
18 Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity—I. Theory [J]. J. Mech. Phys. Solids, 1999, 47: 1239
19 Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces [J]. Acta Mater., 2016, 116: 43
20 Choi C H, Kwon J W, Oh K H, et al. Analysis of deformation texture inhomogeneity and stability condition of shear components in f.c.c. metals [J]. Acta Mater., 1997, 45: 5119
21 Sidor J J, Kestens L A I. Analytical description of rolling textures in face-centred-cubic metals [J]. Scr. Mater., 2013, 68: 273
22 Mao W M, Yang P, Chen L. Material Texture Analysis Principle and Detection Technology [M]. Beijing: Metallurgical Industry Press, 2008: 37
22 毛卫民, 杨 平, 陈 冷. 材料织构分析原理与检测技术 [M]. 北京: 冶金工业出版社, 2008: 37)
23 Hirsch J, Lücke K, Hatherly M. Overview No.76: Mechanism of deformation and development of rolling textures in polycrystalline f.c.c. Metals—III. The influence of slip inhomogeneities and twinning [J]. Acta Metall., 1988, 36: 2905
24 Heye W, Wasserman G. The formation of the rolling textures in FCC metals by slip and twinning [J]. Scr. Metall., 1968, 2: 205
25 Leffers T, Ray R K. The brass-type texture and its deviation from the copper-type texture [J]. Prog. Mater. Sci., 2009, 54: 351
26 Ma Q C, Mao W M, Feng H P. Tensile behavior of commercial aluminum sheets at low deformation degree [J]. J. Plast. Eng., 2015, 12(6): 89
26 马全仓, 毛卫民, 冯惠平. 工业铝板的低应变量拉伸变形行为 [J]. 塑性工程学报, 2005, 12(6): 89)
[1] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[2] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[3] 陈建军, 丁雨田, 王琨, 闫康, 马元俊, 王兴茂, 周胜名. Laves相对 GH3625合金管材热挤压过程中爆裂行为的影响[J]. 金属学报, 2021, 57(5): 641-650.
[4] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[5] 曹铁山, 赵津艺, 程从前, 孟宪明, 赵杰. 冷变形和固溶温度对HR3C钢中σ相析出行为的影响[J]. 金属学报, 2020, 56(5): 673-682.
[6] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[7] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[8] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[9] 周博, 隋曼龄. AZ31镁合金拉伸扭折带结构的产生及交互作用机制[J]. 金属学报, 2019, 55(12): 1512-1518.
[10] 熊健,魏德安,陆宋江,阚前华,康国政,张旭. 位错密度梯度结构Cu单晶微柱压缩的三维离散位错动力学模拟[J]. 金属学报, 2019, 55(11): 1477-1486.
[11] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[12] 丁雨田,高钰璧,豆正义,高鑫,刘德学,贾智. 形变诱导GH3625合金热挤压管材δ相的析出行为[J]. 金属学报, 2017, 53(6): 695-702.
[13] 单智伟, 刘博宇. Mg的{101̅2}形变孪晶机制*[J]. 金属学报, 2016, 52(10): 1267-1278.
[14] 付勇军, 杨平, 蒋奇武, 王晓达, 金文旭. Fe-3%Si电工钢铸坯柱状晶织构的演变规律*[J]. 金属学报, 2015, 51(5): 545-552.
[15] 张新宁,曲迎东,李荣德,尤俊华. 铁素体球墨铸铁低温冲击断裂裂纹形核及扩展机理*[J]. 金属学报, 2015, 51(11): 1333-1340.