Please wait a minute...
金属学报  2019, Vol. 55 Issue (4): 537-546    DOI: 10.11900/0412.1961.2018.00271
  本期目录 | 过刊浏览 |
电阻缝焊法制备铁基WC/金属双层涂层及其摩擦行为
王文琴1,2,王昭漫1,李玉龙1,王德3(),李淼1,陈情1
1. 南昌大学机电工程学院 南昌 330031
2. 清华大学摩擦学国家重点实验室 北京 100084
3. 江西省科学院应用物理研究所 南昌 330029
Wear Behavior of Fe-WC/Metal Double Layer Coatings Fabricated by Resistance Seam Weld Method
Wenqin WANG1,2,Zhaoman WANG1,Yulong LI1,De WANG3(),Miao LI1,Qing CHEN1
1. School of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031, China
2. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
3. Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029, China
引用本文:

王文琴, 王昭漫, 李玉龙, 王德, 李淼, 陈情. 电阻缝焊法制备铁基WC/金属双层涂层及其摩擦行为[J]. 金属学报, 2019, 55(4): 537-546.
Wenqin WANG, Zhaoman WANG, Yulong LI, De WANG, Miao LI, Qing CHEN. Wear Behavior of Fe-WC/Metal Double Layer Coatings Fabricated by Resistance Seam Weld Method[J]. Acta Metall Sin, 2019, 55(4): 537-546.

全文: PDF(32341 KB)   HTML
摘要: 

通过电阻缝焊法,使用超硬铁基合金粉末(SHA)和2种粒度(3.5和55 μm)的WC粉末在Al7075板表面制备了铁基WC/金属双层涂层。采用SEM和EPMA等手段对双层涂层的显微组织进行了分析;采用纳米压痕仪对双层涂层中微小组织进行了纳米硬度测试;最后通过球盘摩擦(ball-on-disc)实验对比了WC和SUS304 2种磨球对双层涂层的摩擦磨损行为的影响。结果表明,该铁基WC/金属双层涂层的总厚度达600 μm,从涂层到基体的结构依次为:WC粉末/铁合金(耐磨层)+铁基/铝合金(金属中间层)+铝合金基体。当以WC为磨球时,使用微细和粗大WC粉末的涂层,其磨损机制分别为严重的磨粒磨损和脆性断裂伴随少量磨粒磨损;当以SUS304为磨球时,使用微细WC的涂层基本未发生磨损,而粗大WC粉末的涂层则发生少量磨粒磨损。以SUS304为磨球时,涂层的磨损率均低于以WC为磨球时涂层的磨损率。

关键词 电阻缝焊法双层涂层摩擦行为    
Abstract

Fe-WC/metal double layer coatings containing Fe-C-Si super hard alloy (SHA) particles and tungsten carbide (WC) particles were fabricated on Al7075 substrates by resistance seam welding method to improve the wear resistance of aluminum alloys. The micro-structure and phase compositions of the Fe-WC/metal double layer coatings with different WC particle sizes (fine and coarse) were investigated by SEM and EPMA. Nano-hardness of different phases in the coatings were investigated by nano-indentation test. Finally, the friction behavior of the two kinds of Fe-WC /metal double layer coatings were contrasted by ball-on-disc test using WC and SUS 304 balls. The results show that the thicknesses of Fe-WC composite/metal double layer coatings were about 600 μm. The microstructure of the coatings was: WC/Fe composite (wear resistance layer)+Fe/Al composite (metal interlayer)+Al7075 substrate. When WC ball was used as the static counterpart, the wear mechanism of the coatings with fine and coarse WC particles were severe abrasive wear and brittle fracture with little abrasive wear, respectively. When SUS304 was used as the static counterpart, the coating with fine WC powder was demonstrated difficulty to be abraded due to the protection of the iron oxide adhesive layer, and the other proved a little brittle fracture. Moreover, the wear rate of both coatings using SUS304 ball was lower than that of WC ball in the ball-on-disc test.

Key wordsresistance seam welding    double layer coatings    wear behavior
收稿日期: 2018-06-27     
ZTFLH:  TG174  
基金资助:国家自然科学基金项目(No.51765041);清华大学摩擦学重点实验室开放基金(No.5KLTLF17B07);江西省重点研发计划项目(No.20171BBE50022)
作者简介: 王文琴,女,1987年生,博士
图1  铁基WC/金属双层涂层断面显微组织的SEM像
图2  铁基WC/金属双层涂层断面的EPMA面扫描照片
图3  涂层F中间层各组织纳米硬度实验结果
图4  WC和SUS304为磨球时2种涂层的磨损率
图5  电阻缝焊法制备涂层F示意图
图6  以WC为磨球时摩擦实验后2种涂层表面形貌
图7  以 SUS304为磨球时摩擦实验后2种涂层表面形貌
图8  以WC为磨球时摩擦实验后2种涂层表面EDS元素分布图
图9  以SUS304为磨球时摩擦实验后2种涂层表面EDS元素分布图
图10  摩擦实验后2种涂层对应的WC磨球表面EDS元素分布图
图11  摩擦实验后涂层对应的SUS304磨球表面EDS元素分布图
1 Poletti C, Balog M, Simancik F, et al. High-temperature strength of compacted sub-micrometer aluminium powder [J]. Acta Mater., 2010, 58: 3781
2 Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for the automotive industry [J]. Mater. Sci. Eng., 2000, A280: 37
3 Wang Y Q, Wang Y, Chen P M, et al. Microstructure, corrosion and wear resistances of microarc oxidation coating on Al alloy 7075 [J]. Acta Metall. Sin., 2011, 47: 455
3 王艳秋, 王 岳, 陈派明等. 7071铝合金微弧氧化涂层的组织结构与耐蚀耐磨性能 [J]. 金属学报, 2011, 47: 455
4 Xiong Y Y, Li N, Jiang H W, et al. Microstructural evolutions of AA7055 aluminum alloy under dynamic and quasi-static compressions [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 272
5 Man H C, Zhang S, Cheng F T. Improving the wear resistance of AA 6061 by laser surface alloying with NiTi [J]. Mater. Lett., 2007, 61: 4058
6 Wang L P, Gao Y, Hu L T, et al. Research status and prospect of electrodeposited functional gradient materials [J]. Surf. Technol., 2006, 35: 1
6 王立平, 高 燕, 胡丽天等. 电沉积功能梯度材料的研究现状及展望 [J]. 表面技术, 2006, 35: 1
7 Aliofkhazraei M, Rouhaghdam A S. Fabrication of functionally gradient nanocomposite coatings by plasma electrolytic oxidation based on variable duty cycle [J]. Appl. Surf. Sci., 2012, 258: 2093
8 Tang J, Xiong J, Guo Z X, et al. Microstructure and properties of CVD coated on gradient cemented carbide with different WC grain size [J]. Int. J. Refract Met. Hard Mater., 2016, 61: 128
9 Pellizzari M. High temperature wear and friction behaviour of nitrided, PVD-duplex and CVD coated tool steel against 6082 Al alloy [J]. Wear, 2011, 271: 2089
10 Wang L, Fu Q G, Zhao F L. A novel gradient SiC-ZrB2-MoSi2 coating for SiC coated C/C composites by supersonic plasma spraying [J]. Surf. Coat. Technol., 2017, 313: 63
11 Yang Y, Li K Z, Zhao Z G, et al. HfC-ZrC-SiC multiphase protective coating for SiC-coated C/C composites prepared by supersonic atmospheric plasma spraying [J]. Ceram. Int., 2017, 43: 1495
12 Zhu C, Wang Y G, An L N, et al. Microstructure and oxidation behavior of conventional and pseudo graded NiCrAlY/YSZ thermal barrier coatings produced by supersonic air plasma spraying process [J]. Surf. Coat. Technol., 2015, 272: 121
13 Liu F C, Mao Y Q, Lin X, et al. Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding [J]. Opt. Laser. Technol., 2016, 83: 140
14 Zhang Y. Research on current status of fabrication methods for functionally graded material [J]. Hot Working Technol., 2012, 41: 14
14 张 勇. 功能梯度材料制备方法的研究现状 [J]. 热加工工艺, 2012, 41: 14
15 Cen Y D, Chen F R. Recent progress in numerical simulation of resistance seam welding [J]. Trans. Chin. Weld. Inst., 2016, 37(2): 123
15 岑耀东, 陈芙蓉. 电阻缝焊数值模拟研究进展 [J]. 焊接学报, 2016, 37(2): 123)
16 Li Y Q, Zhao H, Zhao X H, et al. Numerical simulation of RSW temperature field during aluminum alloys LB-RSW [J]. Trans. Chin. Weld. Inst., 2009, 30(4): 29
16 李永强, 赵 贺, 赵熹华等. 铝合金LB-RSW焊接中RSW温度场的数值模拟 [J]. 焊接学报, 2009, 30(4): 29)
17 Zhao X H, Feng J C. Pressure Welding Method and Equipment [M]. Beijing: China Machine Press, 2005: 1
17 赵熹华, 冯吉才. 压焊方法及设备 [M]. 北京: 机械工业出版社, 2005: 1)
18 Khosravi A, Halvaee A, Hasannia M H. Weldability of electrogalvanized versus galvanized interstitial free steel sheets by resistance seam welding [J]. Mater. Des., 2013, 44: 90
19 Wang W Q, Yamaguchi T, Nishio K. Microstructure and wear behavior of cermet/iron alloy cladding layers on A6061 alloy coated by resistance seam welding method [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 414
20 Wang W Q, Wang D, Yamaguchi T, et al. Comparative study of wear performance of ceramic/iron composite coatings under two different wear modes [J]. Surf. Coat. Technol., 2017, 309: 136
21 Wang W Q, Yamaguchi T, Nishio K. Structure of iron-based cladding layer on Al-Mg-Si alloy coated by a resistance seam welding method [J]. Mater. Trans., 2014, 55: 1698
22 Xu J S, Zhang X C, Xuan F Z, et al. Tensile properties and fracture behavior of laser cladded WC/Ni composite coatings with different contents of WC particle studied by in-situ tensile testing [J]. Mater. Sci. Eng., 2013, A560: 744
23 He L, Tan Y F, Wang X L, et al. Tribological properties of WC and CeO2 particles reinforced in-situ synthesized NiAl matrix composite coatings at elevated temperature [J]. Surf. Coat. Technol., 2014, 244: 123
24 Wang T G, Song B H, Hua W G, et al. Influence of process parameters on the performance uniformity of detonation gun sprayed WC-Co coatings [J]. Acta Metall. Sin., 2011, 47: 115
24 王铁钢, 宋炳红, 华伟刚等. 工艺参数对爆炸喷涂WC-Co涂层性能均匀性的影响 [J]. 金属学报, 2011, 47: 115
25 Zhang F G, Zhu X P, Wang M Y, et al. Surface modification of WC-Ni cemented carbide for seals by high-intensity pulsed ion beam irradiation [J]. Acta Metall. Sin., 2011, 47: 958
25 张锋刚, 朱小鹏, 王明阳等. 强流脉冲离子束辐照WC-Ni硬质密封材料表面改性研究 [J]. 金属学报, 2011, 47: 958
26 Farid A, Guo S J. On the processing, microstructure, mechanical and wear properties of cermet/stainless steel layer composites [J]. Acta Mater., 2007, 55: 1467
27 Bolelli G, Börner T, Milanti A, et al. Tribological behavior of HVOF- and HVAF-sprayed composite coatings based on Fe-Alloy+WC-12% Co [J]. Surf. Coat. Technol., 2014, 248: 104
28 Zhou S F, Dai X Q. Microstructure evolution of Fe-based WC composite coating prepared by laser induction hybrid rapid cladding [J]. Appl. Surf. Sci., 2010, 256: 7395
29 Tong X, Li F H, Kuang M, et al. Effects of WC particle size on the wear resistance of laser surface alloyed medium carbon steel [J]. Appl. Surf. Sci., 2012, 258: 3214
30 Melendez N M, Narulkar V V, Fisher G A, et al. Effect of reinforcing particles on the wear rate of low-pressure cold-sprayed WC-based MMC coatings [J]. Wear, 2013, 306: 185
31 Onuoha C C, Jin C X, Farhat Z N, et al. The effects of TiC grain size and steel binder content on the reciprocating wear behaviour of TiC-316L stainless steel cermets [J]. Wear, 2016, 350-351: 116
32 Gong T M, Yao P P, Zuo X T, et al. Zhong, Influence of WC carbide particle size on the microstructure and abrasive wear behavior of WC-10Co-4Cr coatings for aircraft landing gear [J]. Wear, 2016, 362-363: 135
33 Han J C, Jafari M, Park C G, et al. Microstructure-property relations in WC-Co coatings sprayed from combinatorial Ni-plated and nanostructured powders [J]. Mater. Charact., 2017, 129: 207
34 Zhou D W, Peng Y, Xu S H, et al. Microstructure and mechanical property of steel/Al alloy laser welding with Sn powder addition [J]. Acta Metall. Sin., 2013, 49: 959
34 周惦武, 彭 艳, 徐少华等. 添加Sn粉激光焊接钢铝合金异种金属的显微组织与性能 [J]. 金属学报, 2013, 49: 959
35 Chen M J, Huang J K, He C C, et al. Thermodynamic analysis of the formation of Fe-Al-Zn intermetallic compounds in Al/galvanized steel interface [J]. Acta Metall. Sin., 2016, 52: 113
35 陈满骄, 黄健康, 何翠翠等. Al/镀锌钢板焊接界面区Fe-Al-Zn金属间化合物形成的热力学分析 [J]. 金属学报, 2016, 52: 113
36 Wu Z Q, Xia Y, Li G, et al. Micro-mechanical properties of ceramic coating fabricated by plasma electrolytic oxidation on hot-dip aluminized steel [J]. Acta Metall. Sin., 2008, 44: 119
36 吴振强, 夏 原, 李 光等. 热浸铝钢等离子体电解氧化陶瓷层的微观力学特性 [J]. 金属学报, 2008, 44: 119
37 Bolelli G, Bonferroni B, Laurila J, et al. Micromechanical properties and sliding wear behaviour of HVOF-sprayed Fe-based alloy coatings [J]. Wear, 2012, 276-277: 29
38 Mi P B, Wang T, Ye F X. Influences of the compositions and mechanical properties of HVOF sprayed bimodal WC-Co coating on its high temperature wear performance [J]. Int. J.Refract. Met. Hard Mater., 2017, 69: 158
39 Kennedy F E, Lu Y, Baker I. Contact temperatures and their influence on wear during pin-on-disk tribotesting [J]. Tribol. Int., 2015, 82: 534
40 Farahani M V, Emadoddin E, Emamy M, et al. Effect of grain refinement on mechanical properties and sliding wear resistance of extruded Sc-free 7042 aluminum alloy [J]. Mater. Des., 2014, 54: 361
41 Lu Y, Baker I, Kennedy F E, et al. The effect of sliding velocity on the dry sliding wear of nanophase Fe30Ni20Mn25Al25 against yttria-stabilized zirconia [J]. Intermetallics, 2017, 83: 17
[1] 张伟东, 崔宇, 刘莉, 王文泉, 刘叡, 李蕊, 王福会. 600℃ NaCl盐雾环境下GH4169合金的腐蚀行为[J]. 金属学报, 2023, 59(11): 1475-1486.
[2] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[3] 宋昱杉 刘叡 崔宇 刘莉 王福会. 静水压力和拉伸应力交互作用下Ni-Cr-Mo-V钢应力腐蚀行为研究[J]. 金属学报, 0, (): 0-0.
[4] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[5] 王慕亮 孙玉朋 陈磊 魏洁 董俊华. 含Cr耐蚀钢筋在模拟高碱性混凝土孔隙液中的钝化行为研究[J]. 金属学报, 0, (): 0-0.
[6] 熊天英, 王吉强. 中国科学院金属研究所冷喷涂技术研究进展[J]. 金属学报, 2023, 59(4): 537-546.
[7] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[8] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[9] 张百成, 张文龙, 曲选辉. 基于高通量制备的增材制造材料成分设计[J]. 金属学报, 2023, 59(1): 75-86.
[10] 蔡杰 高杰 花银群 叶云霞 关庆丰 张小锋. 强流脉冲电子束辐照对低压等离子喷涂MCrAlY涂层组织与性能的影响[J]. 金属学报, 0, (): 0-0.
[11] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[12] 曾云鹏 严伟 史显波 闫茂成 单以银 杨柯. Cu含量对管线钢耐微生物腐蚀性能的影响[J]. 金属学报, 0, (): 0-0.
[13] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[14] 董昕远, 雒晓涛, 李成新, 李长久. B清除大气等离子喷涂CuNi熔滴氧化物效应[J]. 金属学报, 2022, 58(2): 206-214.
[15] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.