|
|
金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响 |
汪卫华1,2( ), 罗鹏1,2( ) |
1 中国科学院物理研究所极端条件物理重点实验室 北京 1001902 2 中国科学院大学 北京 100049 |
|
The Dynamic Behavior Hidden in the Long Time Scale of Metallic Glasses and Its Effect on the Properties |
Weihua WANG1,2( ), Peng LUO1,2( ) |
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2 University of Chinese Academy of Sciences, Beijing 100049, China |
引用本文:
汪卫华, 罗鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响[J]. 金属学报, 2018, 54(11): 1479-1489.
Weihua WANG,
Peng LUO.
The Dynamic Behavior Hidden in the Long Time Scale of Metallic Glasses and Its Effect on the Properties[J]. Acta Metall Sin, 2018, 54(11): 1479-1489.
[1] | Morey G W. The Properties of Glass [M]. 2nd Ed., New York:Reinhold, 1954, Vol.124 | [2] | Klement W, Willens R H, Duwez P.Non-crystalline structure in solidified gold-silicon alloys[J]. Nature, 1960, 187: 869 | [3] | Chen H S.Thermodynamic considerations on the formation and stability of metallic glasses[J]. Acta Metall., 1974, 22: 1505 | [4] | Kui H W, Greer A L, Turnbull D.Formation of bulk metallic glass by fluxing[J]. Appl. Phys. Lett., 1984, 45: 615 | [5] | Drehman A J, Greer A L, Turnbull D.Bulk formation of a metallic glass: Pd40Ni40P20[J]. Appl. Phys. Lett., 1982, 41: 716 | [6] | Inoue A.Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Mater., 2000, 48: 279 | [7] | Inoue A, Zhang T, Masumoto T.Al-La-Ni amorphous alloys with a wide supercooled liquid region[J]. Mater. Trans. JIM, 1989, 30: 965 | [8] | Inoue A, Nakamura T, Nishiyama N, et al.Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method[J]. Mater. Trans. JIM, 1992, 33: 937 | [9] | Inoue A, Zhang T, Nishiyama N, et al.Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy[J]. Mater. Trans. JIM, 1993, 34: 1234 | [10] | Inoue A.High strength bulk amorphous alloys with low critical cooling rates (overview)[J]. Mater. Trans. JIM, 1995, 36: 866 | [11] | Perker A, Johnson W L.A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5[J]. Appl. Phys. Lett., 1993, 63: 2342 | [12] | Wang W H, Dong C, Shek C H.Bulk metallic glasses[J]. Mater. Sci. Eng., 2004, R44: 45 | [13] | Johnson W L.Bulk glass-forming metallic alloys: Science and technology[J]. MRS Bull., 1999, 24: 42 | [14] | Wang W H.Roles of minor additions in formation and properties of bulk metallic glasses[J]. Prog. Mater. Sci., 2007, 52: 540 | [15] | Na J H, Demetriou M D, Floyd M, et al.Compositional landscape for glass formation in metal alloys[J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 9031 | [16] | Greer A L, Ma E.Bulk metallic glasses: At the cutting edge of metals research[J]. MRS Bull., 2007, 32: 611 | [17] | Li Y L, Zhao S F, Liu Y H, et al.How many bulk metallic glasses are there?[J]. ACS Comb. Sci., 2017, 19: 687 | [18] | Ding S Y, Liu Y H, Li Y L, et al.Combinatorial development of bulk metallic glasses[J]. Nat. Mater., 2014, 13: 494 | [19] | Gossett E M, Scanley E B, Liu Y H, et al.Computational nanocharacterization for combinatorially developed bulk metallic glass[J]. Int. J. High Speed Electron. Syst., 2015, 24: 1520012 | [20] | Liu J B, Liu Y H, Gong P, et al.Combinatorial exploration of color in gold-based alloys[J]. Gold Bull., 2015, 48: 111 | [21] | Li J Y, Stein H S, Sliozberg K, et al.Combinatorial screening of Pd-based quaternary electrocatalysts for oxygen reduction reaction in alkaline media[J]. J. Mater. Chem., 2017, 5A: 67 | [22] | Inoue A, Shen B L, Koshiba H, et al.Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties[J]. Nat. Mater., 2003, 2: 661 | [23] | Chang C T, Shen B L, Inoue A.FeNi-based bulk glassy alloys with superhigh mechanical strength and excellent soft-magnetic properties[J]. Appl. Phys. Lett., 2006, 89: 051912 | [24] | Liu Y H, Wang G, Pan M X, et al.Deformation behaviors and mechanism of Ni-Co-Nb-Ta bulk metallic glasses with high strength and plasticity[J]. J. Mater. Res., 2007, 22: 869 | [25] | Ma H, Xu J, Ma E.Mg-based bulk metallic glass composites with plasticity and high strength[J]. Appl. Phys. Lett., 2003, 83: 2793 | [26] | Demetriou M D, Launey M E, Garrett G, et al.A damage-tolerant glass[J]. Nat. Mater., 2011, 10: 123 | [27] | Wang W H.The elastic properties, elastic models and elastic perspectives of metallic glasses[J]. Prog. Mater. Sci., 2012, 57: 487 | [28] | Tian L, Cheng Y Q, Shan Z W, et al.Approaching the ideal elastic limit of metallic glasses[J]. Nat. Commun., 2012, 3: 609 | [29] | Conner R D, Dandilker R B, Struggs V, et al.Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites[J]. Int. J. Impact Eng., 2000, 24: 435 | [30] | Grimberg A, Baur H, Bochsler P, et al.Solar wind neon from genesis: Implications for the lunar noble gas record[J]. Science, 2006, 314: 1133 | [31] | Wang W H.Bulk metallic glasses with functional physical properties[J]. Adv. Mater., 2009, 21: 4524 | [32] | Hasegawa R, Azuma D.Impacts of amorphous metal-based transformers on energy efficiency and environment[J]. J. Magn. Magn. Mater., 2008, 320: 2451 | [33] | Gutfleisch O, Willard M A, Brück E, et al.Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient[J]. Adv. Mater., 2011, 23: 821 | [34] | Herzer G.Modern soft magnets: Amorphous and nanocrystalline materials[J]. Acta Mater., 2013, 61: 718 | [35] | Nieh T G, Wadsworth J.Homogeneous deformation of bulk metallic glasses[J]. Scr. Mater., 2006, 54: 387 | [36] | Schroers J.The superplastic forming of bulk metallic glasses[J]. JOM, 2005, 57(5): 35 | [37] | Inoue A, Shen B L, Takeuchi A.Developments and applications of bulk glassy alloys in late transition metal base system[J]. Mater. Trans. JIM, 2006, 47: 1275 | [38] | Chu J P, Wijaya H, Wu C W, et al.Nanoimprint of gratings on a bulk metallic glass[J]. Appl. Phys. Lett., 2007, 90: 034101 | [39] | Tsai P H, Li T H, Hsu K T, et al.Effect of coating thickness on the cutting sharpness and durability of Zr-based metallic glass thin film coated surgical blades[J]. Thin Solid Films, 2016, 618: 36 | [40] | Chu J P, Yu C C, Tanatsugu Y, et al.Non-stick syringe needles: Beneficial effects of thin film metallic glass coating[J]. Sci. Rep., 2016, 6: 31847 | [41] | Hu Y C, Wang Y Z, Su R, et al.A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation[J]. Adv. Mater., 2016, 28: 10293 | [42] | Doubek G, Sekol R C, Li J Y, et al.Guided evolution of bulk metallic glass nanostructures: A platform for designing 3D electrocatalytic surfaces[J]. Adv. Mater., 2016, 28: 1940 | [43] | Greer A L, Cheng Y Q, Ma E.Shear bands in metallic glasses[J]. Mater. Sci. Eng., 2013, R74: 71 | [44] | Schroers J, Johnson W L.Ductile bulk metallic glass[J]. Phys. Rev. Lett., 2004, 93: 255506 | [45] | Das J, Tang M B, Kim K B, et al."Work-hardenable" ductile bulk metallic glass[J]. Phys. Rev. Lett., 2005, 94: 205501 | [46] | Liu Y H, Wang G, Wang R J, et al.Super plastic bulk metallic glasses at room temperature[J]. Science, 2007, 315: 1385 | [47] | Guo H, Yan P F, Wang Y B, et al.Tensile ductility and necking of metallic glass[J]. Nat. Mater., 2007, 6: 735 | [48] | Jang D, Greer J R.Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses[J]. Nat. Mater., 2010, 9: 215 | [49] | Wang Z T, Pan J, Li Y, et al.Densification and strain hardening of a metallic glass under tension at room temperature[J]. Phys. Rev. Lett., 2013, 111: 135504 | [50] | Gao M, Dong J, Huan Y, et al.Macroscopic tensile plasticity by scalarizating stress distribution in bulk metallic glass[J]. Sci. Rep., 2016, 6: 21929 | [51] | Qu R T, Zhang Q S, Zhang Z F.Achieving macroscopic tensile plasticity of monolithic bulk metallic glass by surface treatment[J]. Scr. Mater., 2013, 68: 845 | [52] | Sarac B, Schroers J.Designing tensile ductility in metallic glasses[J]. Nat. Commun., 2013, 4: 2158 | [53] | Qu R T, Zhao J X, Stoica M, et al.Macroscopic tensile plasticity of bulk metallic glass through designed artificial defects[J]. Mater. Sci. Eng., 2012, A534: 365 | [54] | Hofmann D C, Suh J Y, Wiest A, et al.Designing metallic glass matrix composites with high toughness and tensile ductility[J]. Nature, 2008, 451: 1085 | [55] | Pauly S, Gorantla S, Wang G, et al.Transformation-mediated ductility in CuZr-based bulk metallic glasses[J]. Nat. Mater., 2010, 9: 473 | [56] | Hofmann D C, Suh J Y, Wiest A, et al.Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility[J]. Proc. Natl. Acad. Sci. USA, 2008, 105: 20136 | [57] | Wu Y, Xiao Y H, Chen G L, et al.Bulk metallic glass composites with transformation-mediated work-hardening and ductility[J]. Adv. Mater., 2010, 22: 2770 | [58] | Wu Y, Zhou D Q, Song W L, et al.Ductilizing bulk metallic glass composite by tailoring stacking fault energy[J]. Phys. Rev. Lett., 2012, 109: 245506 | [59] | Wu Y, Wang H, Wu H H, et al.Formation of Cu-Zr-Al bulk metallic glass composites with improved tensile properties[J]. Acta Mater., 2011, 59: 2928 | [60] | Ichitsubo T, Matsubara E, Yamamoto T, et al.Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses[J]. Phys. Rev. Lett., 2005, 95: 245501 | [61] | Ye J C, Lu J, Liu C T, et al.Atomistic free-volume zones and inelastic deformation of metallic glasses[J]. Nat. Mater., 2010, 9: 619 | [62] | Dmowski W, Iwashita T, Chuang C P, et al.Elastic heterogeneity in metallic glasses[J]. Phys. Rev. Lett., 2010, 105: 205502 | [63] | Liu Y H, Wang D, Nakajima K, et al.Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy[J]. Phys. Rev. Lett., 2011, 106: 125504 | [64] | Wagner H, Bedorf D, Küchemann S, et al.Local elastic properties of a metallic glass[J]. Nat. Mater., 2011, 10: 439 | [65] | Zhu F, Nguyen H K, Song S X, et al.Intrinsic correlation between β-relaxation and spatial heterogeneity in a metallic glass[J]. Nat. Commun., 2016, 7: 11516 | [66] | Zhu F, Hirata A, Liu P, et al.Correlation between local structure order and spatial heterogeneity in a metallic glass[J]. Phys. Rev. Lett., 2017, 119: 215501 | [67] | Wang Z, Wen P, Huo L S, et al.Signature of viscous flow units in apparent elastic regime of metallic glasses[J]. Appl. Phys. Lett., 2012, 101: 121906 | [68] | Lewandowsli J J, Greer A L.Temperature rise at shear bands in metallic glasses[J]. Nat. Mater., 2006, 5: 15 | [69] | Guan P F, Fujita T, Hirata A, et al.Structural origins of the excellent glass forming ability of Pd40Ni40P20[J]. Phys. Rev. Lett., 2012, 108: 175501 | [70] | Debenedetti P G, Stillinger F H.Supercooled liquids and the glass transition[J]. Nature, 2001, 410: 259 | [71] | Bengtzelius U, G?tze W, Sj?lander A.Dynamics of supercooled liquids and the glass transition[J]. J. Phys., 1984, 17C: 5915 | [72] | G?tze W, Sj?gren L.Relaxation processes in supercooled liquids[J]. Rep. Prog. Phys., 1992, 55: 241 | [73] | Bartsch A, R?tzke K, Meyer A, et al.Dynamic arrest in multicomponent glass-forming alloys[J]. Phys. Rev. Lett., 2010, 104: 195901 | [74] | Cicerone M T, Ediger M D.Enhanced translation of probe molecules in supercooled oterphenyl: Signature of spatially heterogeneous dynamics?[J]. J. Chem. Phys., 1996, 104: 7210 | [75] | Ediger M D.Spatially heterogeneous dynamics in supercooled liquids[J]. Annu. Rev. Phys. Chem., 2000, 51: 99 | [76] | Fujara F, Geil B, Sillescu H H, et al.Translational and rotational diffusion in supercooled orthoterphenyl close to the glass transition[J]. Z. Phys., 1992, 88B: 195 | [77] | Ediger M D, Angell C A, Nagel S R.Supercooled liquids and glasses[J]. J. Phys. Chem., 1996, 100: 13200 | [78] | Biroli G, Bouchaud J-P.Critical fluctuations and breakdown of the Stokes-Einstein relation in the mode-coupling theory of glasses[J]. J. Phys.: Condens. Matter, 2007, 19: 205101 | [79] | Harmon J S, Demetriou M D, Johnson W L.Aneleastic to plastic transition in metallic glass-forming liquids[J]. Phys. Rev. Lett., 2007, 99: 135502 | [80] | Yu H B, Wang W H, Bai H Y, et al.Relating activation of shear transformation zones to beta relaxations in metallic glasses[J]. Phys. Rev., 2010, 81B: 220201 | [81] | Lu Z, Jiao W, Wang W H, et al.Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses[J]. Phys. Rev. Lett., 2014, 113: 045501 | [82] | Yu H B, Shen X, Wang Z, et al.Tensile plasticity in metallic glasses with pronounced b relaxations[J]. Phys. Rev. Lett., 2012, 108: 015504 | [83] | Wang Z, Sun B A, Bai H Y, et al.Evolution of hidden localized flow during glass-to-liquid transition in metallic glass[J]. Nat. Commun., 2014, 5: 5823 | [84] | Zhu Z G, Li Y Z, Wang Z, et al.Compositional origin of unusual β-relaxation properties in La-Ni-Al metallic glasses[J]. J. Chem. Phys., 2014, 141: 084506 | [85] | Wang Z, Yu H B, Wen P, et al.Pronounced slow β-relaxation in La-based bulk metallic glasses[J]. J. Phys.: Condens. Matter, 2011, 23: 142202 | [86] | Yu H B, Wang W H, Bai H Y, et al.The β-relaxation in metallic glasses[J]. Natl. Sci. Rev., 2014, 1: 429 | [87] | Luo P, Lu Z, Zhu Z G, et al.Prominent β-relaxations in yttrium based metallic glasses[J]. Appl. Phys. Lett., 2015, 106: 031907 | [88] | Wang Q, Zhang S T, Yang Y, et al.Unusual fast secondary relaxation in metallic glass[J]. Nat. Commun., 2015, 6: 7876 | [89] | Zhao L Z, Xue R J, Zhu Z G, et al.A fast dynamic mode in rare earth based glasses[J]. J. Chem. Phys., 2016, 144: 204507 | [90] | Wang Q, Liu J J, Ye Y F, et al.Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses[J]. Mater. Today, 2017, 20: 293 | [91] | Küchemann S, Maa? R.Gamma relaxation in bulk metallic glasses[J]. Scr. Mater., 2017, 137: 5 | [92] | Jiang H Y, Luo P, Wen P, et al.The near constant loss dynamic mode in metallic glass[J]. J. Appl. Phys., 2016, 120: 145106 | [93] | Grigera T S, Martín-Mayor V, Parisi G, et al.Phonon interpretation of the 'boson peak' in supercooled liquids[J]. Nature, 2003, 422: 289 | [94] | Shintani H, Tanaka H.Universal link between the boson peak and transverse phonons in glass[J]. Nat. Mater., 2008, 7: 870 | [95] | Schober H R.Quasi-localized vibrations and phonon damping in glasses[J]. J. Non-Cryst. Solids, 2011, 357: 501 | [96] | Laird B B, Schober H R.Localized low-frequency vibrational modes in a simple model glass[J]. Phys. Rev. Lett., 1991, 66: 636 | [97] | Mitrofanov Y P, Peterlechner M, Divinski S V, et al.Impact of plastic deformation and shear band formation on the boson heat capacity peak of a bulk metallic glass[J]. Phys. Rev. Lett., 2014, 112: 135901 | [98] | Bünz J, Brink T, Tsuchiya K, et al.Low temperature heat capacity of a severely deformed metallic glass[J]. Phys. Rev. Lett., 2014, 112: 135501 | [99] | Huang B, Zhu Z G, Ge T P, et al.Hand in hand evolution of boson heat capacity anomaly and slow b-relaxation in La-based metallic glasses[J]. Acta Mater., 2016, 110: 73 | [100] | Angell C A.Formation of glasses from liquids and biopolymers[J]. Science, 1995, 267: 1924 | [101] | Sokolov A P, Rossler E, Kisliuk A, et al.Dynamics of strong and fragile glass formers: Differences and correlation with low-temperature properties[J]. Phys. Rev. Lett., 1993, 71: 2062 | [102] | Sokolov A P, Calemczuk R, Salce B, et al.Low-temperature anomalies in strong and fragile glass formers[J]. Phys. Rev. Lett., 1997, 78: 2405 | [103] | Li Y, Bai H Y, Wang W H, et al.Low-temperature specific-heat anomalies associated with the boson peak in CuZr-based bulk metallic glasses[J]. Phys. Rev., 2006, 74B: 052201 | [104] | Li Y, Yu P, Bai H Y.Study on the boson peak in bulk metallic glasses[J]. J. Appl. Phys., 2008, 104: 013520 | [105] | Yannopoulos S N, Papatheodorou G N.Critical experimental facts pertaining to models and associated universalities for low-frequency Raman scattering in inorganic glass formers[J]. Phys. Rev., 2000, 62B: 3728 | [106] | Luo P, Li Y Z, Bai H Y, et al.Memory effect manifested by a boson peak in metallic glass[J]. Phys. Rev. Lett., 2016, 116: 175901 | [107] | Ketov S V, Sun Y H, Nachum S, et al.Rejuvenation of metallic glasses by non-affine thermal strain[J]. Nature, 2015, 524: 200 | [108] | Li M X, Luo P, Sun Y T, et al.Significantly enhanced memory effect in metallic glass by multistep training[J]. Phys. Rev., 2017, 96B: 174204 | [109] | Ruta B, Chushkin Y, Monaco G, et al.Atomic-scale relaxation dynamics and aging in a metallic glass probed by X-ray photon correlation spectroscopy[J]. Phys. Rev. Lett., 2012, 109: 165701 | [110] | Grubel G, Zontone F.Correlation spectroscopy with coherent X-rays[J]. J. Alloys Compd., 2004, 362: 3 | [111] | Li Y Z, Zhao L Z, Wang C, et al.Communication: Non-monotonic evolution of dynamical heterogeneity in unfreezing process of metallic glasses[J]. J. Chem. Phys., 2015, 143: 041104 | [112] | Giordano V M, Ruta B.Unveiling the structural arrangements responsible for the atomic dynamics in metallic glasses during physical aging[J]. Nat. Commun., 2016, 7: 10344 | [113] | Evenson Z, Ruta B, Hechler S, et al.X-ray photon correlation spectroscopy reveals intermittent aging dynamics in a metallic glass[J]. Phys. Rev. Lett., 2015, 115: 175701 | [114] | Zanotto E D.Do cathedral glasses flow?[J]. Am. J. Phys., 1998, 66: 392 | [115] | Zanotto E D, Gupta P K.Do cathedral glasses flow?—Additional remarks[J]. Am. J. Phys., 1999, 67: 260 | [116] | Welch R C, Smith J R, Potuzak M, et al.Dynamics of glass relaxation at room temperature[J]. Phys. Rev. Lett., 2013, 110: 265901 | [117] | Phillips J C.Stretched exponential relaxation in molecular and electronic glasses[J]. Rep. Prog. Phys., 1996, 59: 1133 | [118] | Ruta B, Baldi G, Chushkin Y, et al.Revealing the fast atomic motion of network glasses[J]. Nat. Commun., 2014, 5: 3939 | [119] | Cangialosi D, Boucher V M, Alegría A, et al.Direct evidence of two equilibration mechanisms in glassy polymers[J]. Phys. Rev. Lett., 2013, 111: 095701 | [120] | Luo P, Lu Z, Li Y Z, et al.Probing the evolution of slow flow dynamics in metallic glasses[J]. Phys. Rev., 2016, 93B: 104204 | [121] | Luo P, Wen P, Bai H Y, et al.Relaxation decoupling in metallic glasses at low temperatures[J]. Phys. Rev. Lett., 2017, 118: 225901 | [122] | Luo P, Li M X, Jiang H Y, et al.Temperature dependent evolution of dynamic heterogeneity in metallic glass[J]. J. Appl. Phys., 2017, 121: 135104 | [123] | Fakhraai Z, Forrest J A.Measuring the surface dynamics of glassy polymers[J]. Science, 2008, 319: 600 | [124] | Chai Y, Salez T, McGraw J D, et al. A direct quantitative measure of surface mobility in a glassy polymer[J]. Science, 2014, 343: 994 | [125] | Zhu L, Brian C W, Swallen S F, et al.Surface self-diffusion of an organic glass[J]. Phys. Rev. Lett., 2011, 106: 256103 | [126] | Cao C R, Lu Y M, Bai H Y, et al.High surface mobility and fast surface enhanced crystallization of metallic glass[J]. Appl. Phys. Lett., 2015, 107: 141606 | [127] | Yang Z H, Fujii Y, Lee F K, et al.Glass transition dynamics and surface layer mobility in unentangled polystyrene films[J]. Science, 2010, 328: 1676 | [128] | Swallen S F, Kearns K L, Mapes M K, et al.Organic glasses with exceptional thermodynamic and kinetic stability[J]. Science, 2007, 315: 353 | [129] | Kearns K L, Still T, Fytas G, et al.High-modulus organic glasses prepared by physical vapor deposition[J]. Adv. Mater., 2010, 22: 39 | [130] | Kearns K L, Swallen S F, Ediger M D, et al.Hiking down the energy landscape: Progress toward the Kauzmann temperature via vapor deposition[J]. J. Phys. Chem., 2008, 112B: 4934 | [131] | Yu H B, Tylinski M, Guiseppi-Elie A, et al.Suppression of β relaxation in vapor-deposited ultrastable glasses[J]. Phys. Rev. Lett., 2015, 115: 185501 | [132] | Yu H B, Luo Y, Samwer K.Ultrastable metallic glass[J]. Adv. Mater., 2013, 25: 5904 | [133] | Aji D P B, Hirata A, Zhu F, et al. Ultrastrong and ultrastable metallic glass [J]. arXiv:1306.1575v1, 2013 | [134] | Guo Y L, Morozov A, Schneider D, et al.Ultrastable nanostructured polymer glasses[J]. Nat. Mater., 2012, 11: 337 | [135] | Singh S, Ediger M D, de Pablo J J. Ultrastable glasses from in silico vapour deposition[J]. Nat. Mater., 2013, 12: 139 | [136] | Chu J P, Jang J S C, Huang J C, et al. Thin film metallic glasses: Unique properties and potential applications[J]. Thin Solid Films, 2012, 520: 5097 | [137] | Luo P, Cao C R, Zhu F, et al.Ultrastable metallic glasses formed on cold substrates[J]. Nat. Commun., 2018, 9: 1389 | [138] | Chen L, Cao C R, Shi J A, et al.Fast surface dynamics of metallic glass enable superlatticelike nanostructure growth[J]. Phys. Rev. Lett., 2017, 118: 016101 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|