Please wait a minute...
金属学报  2012, Vol. 48 Issue (6): 733-738    DOI: 10.3724/SP.J.1037.2012.00156
  论文 本期目录 | 过刊浏览 |
Mg-(11-13)Gd-1Zn变形镁合金的组织和力学性能
甄睿1,2,孙扬善1,白晶1,孙晶晶1,皮锦红1,2
1. 东南大学材料科学与工程学院江苏省先进金属材料高技术研究重点实验室, 南京 211189
2. 南京工程学院材料工程学院, 南京 211167
MICROSTRUCTURES AND MECHANICAL PROPERTIES OF Mg-(11-13)Gd-1Zn ALLOYS
ZHEN Rui1,2, SUN Yangshan1, BAI Jing1, SUN Jingjing1, PI Jinhong1,2
1. Jiangsu Key Lab of Advanced Metallic Materials, College of Material Science and Engineering, Southeast University,Nanjing 211189\par
2. Department of Materials Science and Engineering, Nanjing Institute of Technology,Nanjing 211167
全文: PDF(2241 KB)  
摘要: 制备了3种成分的Mg-Gd-Zn三元合金, 并对其显微组织和力学性能进行了较系统的研究. 结果表明, Mg-(11-13)Gd-1Zn(质量分数, %)三元合金的铸态组织由 α-Mg, (Mg, Zn)3Gd和具有14H结构的长周期堆垛有序相(14H-LPSO)组成; (Mg, Zn)3Gd呈现典型的网状共晶形貌, 其体积分数随Gd含量的增加而增大. 热挤压过程中(Mg, Zn)3Gd相破碎, 其颗粒沿挤压方向排列, 而14H-LPSO相则分布于条状分布的(Mg, Zn)3Gd颗粒之间. 铸态和挤压态合金在高温固溶处理后, 14H--LPSO相的体积分数增加, 大部分(Mg, Zn)3Gd相溶入基体. 挤压态合金经固溶和时效(T6)处理后, 显微组织中14H--LPSO相的体积分数大幅度增加, 而且出现了β'β1沉淀颗粒. 对挤压后的合金直接进行时效处理(T5)过程中也形成了β'β1沉淀, 但14H-LPSO相没有显著增加. 3种合金中 Mg-11Gd-1Zn合金在T6态的性能最好, 抗拉强度高达 416 MPa.
关键词 镁合金GdZn时效长周期堆垛有序相    
Abstract:Three ternary alloys with composition of Mg-(11-13)Gd-1Zn (mass fraction, %) have been prepared and their microstructures and mechanical properties have been also investigated. The results showed that the as cast microstructure of the three alloys consists of α-Mg matrix, (Mg, Zn)3Gd eutectic and a 14H long--period stacking ordered (14H--LPSO) phase. With the increase of Gd content the volume fraction of the (Mg, Zn)3Gd eutectic increases. After extrusion the (Mg, Zn)3Gd eutectic networks are destroyed and its broken particles are arranged in strips along the direction of extrusion, and the 14H--LPSO phase is distributed between (Mg, Zn)3Gd strips. Solid solution treatment at high temperature above 500 ℃ results in the dissolution of (Mg, Zn)3Gd phase into the matrix and the increase of the 14H-LPSO phase. After solution treated alloys are aged at temperature of 225 ℃ (T6 treatment) the volume fraction of the 14H-LPSO phase is further increased and both β' and β1 precipitates appear in the microstructure. Aging of as extruded alloys (T5 treatment) also causes the formation of β' and β1 precipitates but the volume fraction of the 14H--LPSO phase in the T5 treated specimens is lower than that in specimens after T6 treatment. High tensile strength combined with good ductility is obtained from the Mg--11Gd--1Zn alloy after T6 aging.
Key wordsmagnesium alloy    Gd    Zn    aging    long-period stacking ordered phase
收稿日期: 2012-03-26      出版日期: 2012-06-11
基金资助:

江苏省自然科学基金资助项目BK2010392

通讯作者: 孙扬善     E-mail: yssun@seu.edu.cn
Corresponding author: Yangshan Sun     E-mail: yssun@seu.edu.cn
作者简介: 甄睿, 女, 1978年生, 讲师, 博士生

引用本文:

甄睿,孙扬善,白晶,孙晶晶,皮锦红. Mg-(11-13)Gd-1Zn变形镁合金的组织和力学性能[J]. 金属学报, 2012, 48(6): 733-738.
ZHEN Rui, SUN Yangshan, BAI Jing, SUN Jingjing, PI Jinhong. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF Mg-(11-13)Gd-1Zn ALLOYS. Acta Metall Sin, 2012, 48(6): 733-738.

链接本文:

http://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00156      或      http://www.ams.org.cn/CN/Y2012/V48/I6/733

[1] Bae D H, Lee M H, Kim K T, Kim D H. J Alloy Compd, 2002; 342: 445
[2] Liu K, Zhang J H, Su G H, Tang D X, Rokhlin L L, Elkin F M, Meng J. J Alloy Compd, 2009; 481: 811
[3] Gao Y, Wang Q D, Gu J H, Zhao Y, Tong Y, Yin D D. J Alloy Compd, 2009; 477: 374
[4] Li D J, Zeng X Q, Dong J, Zhai C Q, Ding W J. J Alloy Compd, 2009; 468: 164
[5] Wu Y J, Zeng X Q, Lin D L, Peng L M, Ding W J. J Alloy Compd, 2009; 477: 193
[6] Apps P J, Karimzadeh H, King J F, Lorimer G. Scr Mater, 2003; 8: 1023
[7] Kawamura Y, Hayashi K, Inoue A, Masumoto T. Mater Trans, 2001; 42: 1171
[8] Itoi T, Seimiya T, Kawamura Y, Hirohashi M. Scr Mater, 2004; 51: 107
[9] Chino Y, Mabuchi M, Hagiwara S, Iwasaki H, Yamamoto A, Tsubakino H. Scr Mater, 2004; 51: 711
[10] Liu K, Meng J. J Alloys Compd, 2011; 509: 3299
[11] Yang Z, Li J P, Guo Y C, Liu T, Xia F, Zeng Z W, Liang M X. Mater Sci Eng, 2007; A454--455: 274
[12] Liu X B, Chen R S, Han E H. J Alloy Compd, 2008; 465: 232
[13] Han X Z, Xu W C, Shan D B. J Alloy Compd, 2011; 509: 8625
[14] Yin D D, Wang Q D, Gao Y, Chen C J, Zheng J. J Alloy Compd, 2011; 509: 1696
[15] Zhang S, Yuan G Y, Lu C, Ding W J. J Alloy Compd, 2011; 509: 3515
[16] Zheng L, Liu C M, Wan Y C, Yang P W, Shu X. J Alloy Compd, 2011; 509: 8832
[17] Yamasaki M, Sasaki M, Nishijima M, Hiraga K, Kawamura Y. Acta Mater, 2007; 55: 6798
[18] Honma T, Ohkubo T, Kamado S, Hono K. Acta Mater, 2007; 55: 4137
[19] Yamasaki M, Anan T, Yoshimoto S, Kawamura Y. Scr Mater, 2005; 53: 799
[20] Shao X H, Yang Z Q, Ma X L. Acta Mater, 2010; 58: 4760
[21] Hagihara K, Kinoshita A, Sugino Y, Yamasaki M, Kawamura Y, Yasuda H Y, Umakoshi Y. Acta Mater, 2010; 58: 6282
[22] Zeng X Q, Wu Y J, Peng L M, Lin D L, Ding W J, Peng Y H. Acta Metall Sin, 2010; 46: 1041 (曾小勤, 吴玉娟, 彭立明, 林栋樑, 丁文江, 彭赢红. 金属学报, 2010; 46: 1041)
[23] Matsuda M, Ando S, Nishida M. Mater Trans, 2005; 46: 361
[24] Antion C, Donnadieu P, Perrard F, Desehamps A, Tassin C, Piseh A. Acta Mater, 2003; 51: 5335
[25] Nie J F, Oh--ishi K, Gao X, Hono K. Acta Mater, 2008; 56: 6061
[26] Liu K, Zhang J H, Lu H, Tang D X, Rokhlin L L, Elkin F M, Meng J. Mater Des, 2010; 31: 210
[1] 崔荣华, 王歆钰, 董正超, 仲崇贵. Mg1-xZnx合金的弹性和热力学性质的第一性原理研究[J]. 金属学报, 2017, 53(9): 1133-1139.
[2] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[3] 陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出过程的小角度X射线散射定量表征[J]. 金属学报, 2017, 53(8): 897-906.
[4] 陈懿, 郭明星, 易龙, 袁波, 李高洁, 庄林忠, 张济山. 新型Al-Mg-Si-Cu-Zn合金板材组织、织构和性能的优化调控[J]. 金属学报, 2017, 53(8): 907-917.
[5] 周野,毛萍莉,王志,刘正,王峰. Mg-7Zn-xCu-0.6Zr合金热裂行为的研究[J]. 金属学报, 2017, 53(7): 851-860.
[6] 尚秀玲,张波,柯伟. 富Sb相对锌合金在近中性和酸性溶液中耐蚀性的影响[J]. 金属学报, 2017, 53(3): 351-357.
[7] 王晨充,张弛,杨志刚,苏杰,翁宇庆. 高Co-Ni二次硬化钢的设计准则与时效工艺分析[J]. 金属学报, 2017, 53(2): 175-182.
[8] 张小农, 左敏超, 张绍翔, 吴宏流, 王文辉, 陈文智, 倪嘉桦. 医用可降解血管支架临床研究进展[J]. 金属学报, 2017, 53(10): 1215-1226.
[9] 袁广银, 牛佳林. 可降解医用镁合金在骨修复应用中的研究进展[J]. 金属学报, 2017, 53(10): 1168-1180.
[10] 奚廷斐, 魏利娜, 刘婧, 刘小丽, 甄珍, 郑玉峰. 镁合金全降解血管支架研究进展[J]. 金属学报, 2017, 53(10): 1153-1167.
[11] 郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展[J]. 金属学报, 2017, 53(10): 1227-1237.
[12] 韩林原, 李旋, 储成林, 白晶, 薛烽. 流场环境中AZ31镁合金的腐蚀行为研究[J]. 金属学报, 2017, 53(10): 1347-1356.
[13] 闫亚琼,罗晋如,张济山,庄林忠. 强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究[J]. 金属学报, 2017, 53(1): 107-113.
[14] 蔡贇,孙朝阳,万李,阳代军,周庆军,苏泽兴. AZ80镁合金动态再结晶软化行为研究*[J]. 金属学报, 2016, 52(9): 1123-1132.
[15] 王峰,马德志,王志,毛萍莉,刘正. AM50-x(Zn, Y)镁合金的显微组织、力学性能与凝固行为*[J]. 金属学报, 2016, 52(9): 1115-1122.