Please wait a minute...
金属学报  2012, Vol. 48 Issue (2): 148-158    DOI: 10.3724/SP.J.1037.2011.00308
  论文 本期目录 | 过刊浏览 |
Ti-6Al-4V中界面能对α相片层生长的影响三维相场模拟
杨梅1,王刚2,滕春禹1,3,4, 徐东生1,张鉴5,杨锐1,王云志3
1. 中国科学院金属研究所, 沈阳 110016
2. 华南理工大学材料科学与工程学院, 广州 510640
3. The Ohio State University, Columbus OH 43210, USA
4. 东北大学理学院, 沈阳 110819
5. 中国科学院计算机网络信息中心, 北京 100190
3D PHASE FIELD SIMULATION OF EFFECT OF INTERFACIAL ENERGY ANISOTROPY ON SIDEPLATE GROWTH IN Ti–6Al–4V
YANG Mei 1, WANG Gang 2, TENG Chunyu 1,3,4, XU Dongsheng 1, ZHANG Jian 5, YANG Rui 1, WANG Yunzhi 3
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
3. The Ohio State University, Columbus OH 43210, USA
4. College of Science, Northeastern University, Shenyang 110819
5. Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190
引用本文:

杨梅 王刚 滕春禹 徐东生 张鉴 杨锐 王云志. Ti-6Al-4V中界面能对α相片层生长的影响三维相场模拟[J]. 金属学报, 2012, 48(2): 148-158.
, , , , , . 3D PHASE FIELD SIMULATION OF EFFECT OF INTERFACIAL ENERGY ANISOTROPY ON SIDEPLATE GROWTH IN Ti–6Al–4V[J]. Acta Metall Sin, 2012, 48(2): 148-158.

全文: PDF(1235 KB)  
摘要: 采用相场方法定量模拟了界面能各向异性对Ti-6Al-4V合金片层α相生长的影响.模拟所需的动力学与热力学数据分别来自DICTRA和Thermo-Calc数据库. 结果表明, 在高温热处理条件下, 界面能各向异性是控制α相形貌的重要因素.温度越高α相沿长度方向生长越慢, 片层的宽度和厚度越大.定量研究了新生α相和残余β相的宽度和厚度随模拟条件的变化,统计结果表明, 对应于不同的界面能各向异性, α相的宽厚比演化规律不同, 界面能各向异性越强, 生成的α相越宽, 残余β相宽度也越大. 溶质场分析表明, 生长过程中溶质分布不均匀, 在相界β侧形成了Al贫瘠区和V富集区, 且界面能各向异性越强, 溶质场不均匀越明显.
关键词 相场Ti-6Al-4V 界面能各向异性 α相片层 成分场    
Abstract:The effect of interface energy anisotropy on the sideplate growth in Ti–6Al–4V is studied using 3D quantitative phase field method. The dynamic and thermodynamic data come from the DICTRA and Thermo–Calc databases, respectively. The results show that the interface anisotropy is an important factor controlling the shape of plates. Larger interface energy anisotropy results in wider plates and thicker residual β phase. Statistics of plate width, thickness and inter–platelet β phase thickness show that the evolutions of the width to thickness ratio of sideplate are different for systems with different interface energy anisotropy ratios. Solute concentrations are found inhomogeneous in the β phase near α/β interface (Al–poor and V–rich). The stronger the interface energy anisotropy is, the greater of the inhomogeneity. Higher temperatures result in slower growth, forming wider and thicker plates.
Key wordsphase field    Ti–6Al–4V    interface energy anisotropy    α–lamella    solute field
收稿日期: 2011-05-16     
基金资助:

国家重点基础研究发展计划项目2011CB606404和中国科学院信息化建设专项项目INFO--115--B01资助

作者简介: 杨梅, 女, 1981年生, 博士生
[1] Sastry S M L, Meschter P J, Oneal J E. Metall Mater Trans, 1984; 15A: 1451

[2] Greenfie M A, Margolin H. Metall Trans, 1972; 3: 2649

[3] Weiss I, Froes F H, Eylon D, Welsch G E. Metall Trans, 1986; 17A: 1935

[4] Shell E, Semiatin S. Metall Mater Trans, 1999; 30A: 3219

[5] Stefansson N, Semiatin S L, Eylon D. Metall Mater Trans, 2002; 33A: 3527

[6] Stefansson N, Semiatin S L. Metall Mater Trans, 2003; 34A: 691

[7] Yoder G R, Cooley L A, Crooker T W. Metall Mater Trans, 1977; 8A: 1737

[8] Yoder G R, Cooley L A, Crooker T W. Eng Fract Mech, 1979; 11: 805

[9] Lindigkeit J, Terlinde G, Gysler A, Lutjering G. Acta Metall, 1979; 27: 1717

[10] Carter R D, Lee E W, Starke E A, Beevers C J. Metall Mater Trans, 1984; 15A: 555

[11] Suresh S. Metall Mater Trans, 1985; 16A: 249

[12] Hall I W, Hammond C. Mater Sci Eng, 1978; 32: 241

[13] Ravichandran K S. Acta Metall Mater, 1991; 39: 401

[14] Shademan S, Sinha V, Soboyejo A B O, Soboyejo W O. Mech Mater, 2004; 36: 161

[15] Ma Y J. PhD Thesis, Institute of Metal Research, Chinese academy of sciences, Shenyang, 2009

(马英杰. 中国科学院金属研究所博士学位论文, 沈阳, 2009)

[16] Liu J R. Post–doctoral Research Report, Institute of Metal Research, Chinese academy of sciences, Shenyang, 2011

(刘建荣.中国科学院金属研究所博士后出站报告, 沈阳, 2011)

[17] Filip R, Kubiak K, ZiajaW, Sieniawski J. J Mater Process Technol, 2003; 133: 84

[18] Li S K, Xiong B Q, Hui S X, Ye W J, Yu Y. Mater Sci Eng, 2007; A460: 140

[19] Semiatin S L, Bieler T R. Acta Mater, 2001; 49: 3565

[20] Ahmed T, Rack H J. Mater Sci Eng, 1998; A243: 206

[21] Banerjee R, Bhattacharyya D, Collins P C, Viswanathan G B, Fraser H L. Acta Mater, 2004; 52: 377

[22] Bhattacharyya D, Viswanathan G B, Fraser H L. Acta Mater, 2007; 55: 6765

[23] Krahe P R, Aaronson H I, Kinsman K R. Acta Metall, 1972; 20: 1109

[24] Zener C. Trans AIME, 1946; 167: 550

[25] Kirkaldy J S. Scand J Metall, 1991; 20: 50

[26] Aaronson H I, Furuhara T, Enomoto M. Scand J Metall, 1991; 20: 18

[27] Mullins W W, Sekerka R F. J Appl Phys, 1963; 34: 323

[28] Loginova I, Agren J, Amberg G. Acta Mater, 2004; 52: 4055

[29] Ma N. PhD Thesis, The Ohio State University, 2005

[30] Wang Y, Ma N, Chen Q, Zhang F, Chen S L, Chang Y A. JOM, 2005; 57: 32

[31] Ma N, Yang F, Shen C,Wang G, Viswanathan G B, Collins P C, Xu D S, Yang R, Fraser H L,Wang Y Z. In: NinomiM ed., Ti–2007 Science and Technology, Sendai: the Japan

Institute of Metals, 2007: 287

[32] Wang G, Xu D S, Yang R. Acta Phys Sin, 2009; 58(Spec): S343

(王刚, 徐东生, 杨锐. 物理学报, 2009; 58: S343)

[33] Chen Q, Ma N, Wu K S, Wang Y Z. Scr Mater, 2004; 50: 471

[34] Mills M J, Hou D H, Suri S, Viswanathan G B. In: Pond R C ed., Boundaries and Interfaces in Materials: The David A. Smith Symposium, Warrendale: Minerals, Metals

& Materials Soc, 1998: 295
[1] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[3] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[4] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[5] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[6] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[7] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[8] 樊永霞, 王建, 张学哲, 王建忠, 汤慧萍. SEBM成形片状极小曲面点阵材料的力学性能[J]. 金属学报, 2021, 57(7): 871-879.
[9] 孙正阳, 杨超, 柳文波. UO2烧结过程的相场模拟[J]. 金属学报, 2020, 56(9): 1295-1303.
[10] 孙佳, 李学雄, 张金虎, 王刚, 杨梅, 王皞, 徐东生. Ti-6Al-4V合金βα相变中晶界α相形成机制的相场模拟[J]. 金属学报, 2020, 56(8): 1113-1122.
[11] 孙正阳, 王昱天, 柳文波. 气孔与晶界相互作用的相场模拟[J]. 金属学报, 2020, 56(12): 1643-1653.
[12] 赵宝军,赵宇宏,孙远洋,杨文奎,侯华. Mn含量对Fe-Cu-Mn合金纳米富Cu析出相影响的相场法研究[J]. 金属学报, 2019, 55(5): 593-600.
[13] 魏铖, 柯常波, 马海涛, 张新平. 基于序参量梯度的改进相场模型及对大尺度体系马氏体相变的模拟研究[J]. 金属学报, 2018, 54(8): 1204-1214.
[14] 王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.
[15] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.