Please wait a minute...
金属学报  2019, Vol. 55 Issue (6): 683-691    DOI: 10.11900/0412.1961.2018.00517
  本期目录 | 过刊浏览 |
纳米增强体强化轻合金复合材料制备及构型设计研究进展与展望
王慧远,李超,李志刚,徐进,韩洪江,管志平,宋家旺,王珵,马品奎()
吉林大学材料科学与工程学院汽车材料教育部重点实验室 长春 130025
Current Research and Future Prospect on the Preparation and Architecture Design of Nanomaterials Reinforced Light Metal Matrix Composites
Huiyuan WANG,Chao LI,Zhigang LI,Jin XU,Hongjiang HAN,Zhiping GUAN,Jiawang SONG,Cheng WANG,Pinkui MA()
Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130025, China
全文: PDF(5830 KB)   HTML
摘要: 

纳米增强体强化轻合金复合材料以其室温强度高、塑性好,耐磨损和优异的高温性能等特点,并兼有结构和功能一体化特性,成为近年来金属基复合材料(MMCs)领域的研究热点之一。实现纳米增强体的弥散分布或构型设计、改善界面结合是纳米增强体强化轻合金复合材料可控制备的重要挑战。本文重点概述了纳米增强体强化轻合金复合材料在制备策略、多尺度混杂增强、增强体构型设计以及新型加工制备技术等方面的研究进展,展望了轻合金复合材料在高强塑性能、构型优化以及结构功能一体化等方面的发展方向。

关键词 纳米增强体轻合金复合材料构型设计混杂增强结构功能一体化    
Abstract

In recent years, nanomaterials reinforced light metal matrix composites (LMMCs) have been researched widely, due to the enhancement in strength and ductility at room temperature, good wear resistance, excellent high temperature performance and structural-functional integration. However, there remain many challenges in developing high-performance nanomaterials reinforced LMMCs to date. The challenges mainly concentrate in the attainment of homogeneous dispersion or a controlled inhomogeneous microstructure of nanomaterials reinforcements, and the formation of the strong interfacial bonding. In the present review, therefore, current developments in fabrication, multi-scale hybrid reinforcement, novel architecture design and new processing method have been addressed. Moreover, further research interests related to the designs of nanomaterials reinforced LMMCs exhibiting high strength and plasticity, optimal architecture design and structural-functional integration have been proposed.

Key wordsnanomaterial reinforcement    light metal matrix composite    architecture design    hybrid reinforcement    structural-functional integration
收稿日期: 2018-11-16      出版日期: 2019-04-01
ZTFLH:  TG146.2  
基金资助:国家重点研发计划国际合作项目(No.2016YFE0115300);国家自然科学基金项目(No.51625402)
通讯作者: 马品奎     E-mail: mapk@jlu.edu.cn
Corresponding author: Pinkui MA     E-mail: mapk@jlu.edu.cn
作者简介: 王慧远,男,1974年生,教授,博士

引用本文:

王慧远,李超,李志刚,徐进,韩洪江,管志平,宋家旺,王珵,马品奎. 纳米增强体强化轻合金复合材料制备及构型设计研究进展与展望[J]. 金属学报, 2019, 55(6): 683-691.
Huiyuan WANG,Chao LI,Zhigang LI,Jin XU,Hongjiang HAN,Zhiping GUAN,Jiawang SONG,Cheng WANG,Pinkui MA. Current Research and Future Prospect on the Preparation and Architecture Design of Nanomaterials Reinforced Light Metal Matrix Composites. Acta Metall, 2019, 55(6): 683-691.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2018.00517      或      http://www.ams.org.cn/CN/Y2019/V55/I6/683

图1  溶剂辅助分散加机械球磨法制备SiC/Mg-8Al-1Sn纳米复合粉末示意图

Architecture

Material

(volume fraction / %)

Processing

E

GPa

UTS

MPa

YS

MPa

δ

%

Ref.

Homogeneous0.5SiC/Mg-8Al-1SnPM+hot extrusion-3812398.3[8]
Mg-8Al-1Sn--3181754.5[8]
0.8SiC/2014AlPM+hot extrusion73.55733789.0[10]
2014AlPM+hot extrusion71.651331012.5[10]
5Al2O3/7075AlMechanical alloying-443-2.1[11]
3CNT/AlFPM+HEBM91.0406-8.8[12]
AlFPM70.6245-15.8[12]
1.5CNT/Al-Zn-Mg-CuFPM-SSBM78.06986954.4[13]
(8.15TiB+1.25TiC+0.59La2O3)/TiIn situ synthesized129.51298.51170.84.2[14]
TiIn situ synthesized112.81051.1934.310.2[14]
(1.2TiC+2.5TiB+1.3Nd2O3)/TiIn situ synthesized-1150-1.0[15]
Laminated5TiBw/TiReaction hot pressing-61749724.5[16]
1.5RGO/AlFPM87302-5.3[17]
3D network(5TiB+5TiC)/Ti64Reaction hot pressing-126711536.1[18]
Ti64Reaction hot pressing-94482313.0[18]
Two-scale network

(4Ti5Si3+3.4TiBw)/Ti64

Reaction hot pressing

-

1180

1050

5.0

[19]

表1  不同纳米增强体强化轻合金复合材料的力学性能[8,10,11,12,13,14,15,16,17,18,19]
图2  Al-20%Mg2Si (质量分数)中初生Mg2Si三维形貌图
图3  4种典型的纳米增强体强化轻合金复合材料构型设计
图4  片状粉末冶金法制备层状构型还原氧化石墨烯/Al纳米复合材料示意图
[1] Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites [J]. Mater. Sci. Eng., 2000, R29: 49
doi: 10.1016/S0927-796X(00)00024-3
[2] Tjong S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets [J]. Mater. Sci. Eng., 2013, R74: 281
doi: 10.1016/j.mser.2013.08.001
[3] Watanabe Y, Inaguma Y, Sato H, et al. A Novel fabrication method for functionally graded materials under centrifugal force: The Centrifugal mixed-powder method [J]. Materials, 2009, 2: 2510
doi: 10.3390/ma2042510 pmid: 5513590
[4] Li Y Z, Wang Q Z, Wang W G, et al. Interfacial reaction mechanism between matrix and reinforcement in B4C/6061Al composites [J]. Mater. Chem. Phys., 2015, 154: 107
doi: 10.1016/j.matchemphys.2015.01.052
[5] Wu H, Leng J F, Teng X Y, et al. Strain partitioning behavior of in situ Ti5Si3/TiAl composites [J]. J. Alloys Compd., 2018, 744: 182
doi: 10.1016/j.jallcom.2018.02.087
[6] Fan G L, Huang H Y, Tan Z Q, et al. Grain refinement and superplastic behavior of carbon nanotube reinforced aluminum alloy composite processed by cold rolling [J]. Mater. Sci. Eng., 2017, A708: 537
[7] Huang L J, Geng L, Peng H X. Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal? [J]. Prog. Mater. Sci., 2015, 71: 93
doi: 10.1016/j.pmatsci.2015.01.002
[8] Li C P, Wang Z G, Wang H Y, et al. Fabrication of nano-SiC particulate reinforced Mg-8Al-1Sn composites by powder metallurgy combined with hot extrusion [J]. J. Mater. Eng. Perform., 2016, 25: 5049
doi: 10.1007/s11665-016-2326-7
[9] Wang Z G, Li C P, Wang H Y, et al. Aging behavior of nano-SiC/2014Al composite fabricated by powder metallurgy and hot extrusion techniques [J]. J. Mater. Sci. Technol., 2016, 32: 1008
doi: 10.1016/j.jmst.2016.07.011
[10] Wang Z G, Li C P, Wang H Y, et al. Effect of nano-SiC content on mechanical properties of SiC/2014Al composites fabricated by powder metallurgy combined with hot extrusion [J]. Powder Metall., 2016, 59: 236
doi: 10.1080/00325899.2016.1148228
[11] Mobasherpour I, Tofigh A A, Ebrahimi M. Effect of nano-size Al2O3 reinforcement on the mechanical behavior of synthesis 7075 aluminum alloy composites by mechanical alloying [J]. Mater. Chem. Phys., 2013, 138: 535
doi: 10.1016/j.matchemphys.2012.12.015
[12] Fan G L, Jiang Y, Tan Z Q, et al. Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy [J]. Carbon, 2018, 130: 333
doi: 10.1016/j.carbon.2018.01.037
[13] Xu R, Tan Z Q, Fan G L, et al. High-strength CNT/Al-Zn-Mg-Cu composites with improved ductility achieved by flake powder metallurgy via elemental alloying [J]. Composites, 2018, 111A: 1
doi: 10.1016/j.compositesa.2018.05.012
[14] Yang Z F, Lu W J, Zhao L, et al. Microstructure and mechanical property of in situ synthesized multiple-reinforced (TiB+TiC+La2O3)/Ti composites [J]. J. Alloys Compd., 2008, 455: 210
doi: 10.1016/j.jallcom.2007.01.087
[15] Yang Z F, Lu W J, Xu D, et al. In situ synthesis of hybrid and multiple-dimensioned titanium matrix composites [J]. J. Alloys Compd., 2006, 419: 76
doi: 10.1016/j.jallcom.2005.09.055
[16] Liu B X, Huang L J, Geng L, et al. Fracture behaviors and microstructural failure mechanisms of laminated Ti-TiBw/Ti composites [J]. Mater. Sci. Eng., 2014, A611: 290
doi: 10.1016/j.msea.2014.05.089
[17] Li Z, Guo Q, Li Z Q, et al. Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure [J]. Nano Lett., 2015, 15: 8077
doi: 10.1021/acs.nanolett.5b03492
[18] Huang L Q, Wang L H, Qian M, et al. High tensile-strength and ductile titanium matrix composites strengthened by TiB nanowires [J]. Scr. Mater., 2017, 141: 133
doi: 10.1016/j.scriptamat.2017.08.007
[19] Jiao Y, Huang L J, An Q, et al. Effects of Ti5Si3 characteristics adjustment on microstructure and tensile properties of in-situ (Ti5Si3+TiBw)/Ti6Al4V composites with two-scale network architecture [J]. Mater. Sci. Eng., 2016, A673: 595
[20] Nampoothiri J, Harini R S, Nayak S K, et al. Post in-situ reaction ultrasonic treatment for generation of Al-4.4Cu/TiB2 nanocomposite: A route to enhance the strength of metal matrix nanocomposites [J]. J. Alloys Compd., 2016, 683: 370
doi: 10.1016/j.jallcom.2016.05.067
[21] Xiao P, Gao Y M, Yang C C, et al. Microstructure, mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles [J]. Mater. Sci. Eng., 2018, A710: 251
doi: 10.1016/j.msea.2017.10.107
[22] Song M S, Zhang M X, Zhang S G, et al. In situ fabrication of TiC particulates locally reinforced aluminum matrix composites by self-propagating reaction during casting [J]. Mater. Sci. Eng., 2008, A473: 166
doi: 10.1016/j.msea.2007.03.086
[23] Zhou D S, Qiu F, Jiang Q C. The nano-sized TiC particle reinforced Al-Cu matrix composite with superior tensile ductility [J]. Mater. Sci. Eng., 2015, A622: 189
doi: 10.1016/j.msea.2014.11.006
[24] Wang H Y, Yu H C, Li C, et al. Morphology evolution of primary Mg2Si in Al-20Mg2Si-0.1Ca alloys prepared with various solidification cooling rates [J]. CrystEngComm, 2017, 19: 1680
doi: 10.1039/C7CE00028F
[25] Wang H Y, Zhu J N, Li J H, et al. Refinement and modification of primary Mg2Si in an Al-20Mg2Si alloy by a combined addition of yttrium and antimony [J]. CrystEngComm, 2017, 19: 6365
doi: 10.1039/C7CE01309D
[26] Razaghian A, Bahrami A, Emamy M. The influence of Li on the tensile properties of extruded in situ Al-15%Mg2Si composite [J]. Mater. Sci. Eng., 2012, A532: 346
[27] Bian L P, Liang W, Xie G Y, et al. Enhanced ductility in an Al-Mg2Si in situ composite processed by ECAP using a modified BC route [J]. Mater. Sci. Eng., 2011, A528: 3463
doi: 10.1016/j.msea.2011.01.034
[28] Li Z D, Li C, Liu Y C, et al. Effect of heat treatment on microstructure and mechanical property of Al-10%Mg2Si alloy [J]. J. Alloys Compd., 2016, 663: 16
doi: 10.1016/j.jallcom.2015.12.128
[29] Zhao N Q, Liu X H, Pu B W. Progress on multi-dimensional carbon nanomaterials reinforced aluminum matrix composites: A review [J]. Acta Metall. Sin., 2019, 55: 1
[29] (赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展 [J]. 金属学报, 2019, 55: 1)
[30] Gao X, Yue H Y, Guo E J, et al. Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites [J]. Mater. Des., 2016, 94: 54
doi: 10.1080/02670836.2018.1446869
[31] Saba F, Sajjadi S A, Haddad-Sabzevar M, et al. Exploring the reinforcing effect of TiC and CNT in dual-reinforced Al-matrix composites [J]. Diam. Relat. Mater., 2018, 89: 180
doi: 10.1016/j.diamond.2018.09.007
[32] Wang Y, Shen P, Guo R F, et al. Developing high toughness and strength Al/TiC composites using ice-templating and pressure infiltration [J]. Ceram. Int., 2017, 43: 3831
doi: 10.1016/j.ceramint.2016.12.038
[33] Jiang L, Li Z Q, Fan G L, et al. A flake powder metallurgy approach to Al2O3/Al biomimetic nanolaminated composites with enhanced ductility [J]. Scr. Mater., 2011, 65: 412
doi: 10.1016/j.scriptamat.2011.05.022
[34] Wu H, Fan G H, Huang M, et al. Fracture behavior and strain evolution of laminated composites [J]. Compos. Struct., 2017, 163: 123
doi: 10.1016/j.compstruct.2016.12.036
[35] Launey M E, Munch E, Alsem D H, et al. A novel biomimetic approach to the design of high-performance ceramic-metal composites [J]. J. Roy. Soc. Interface, 2010, 7: 741
doi: 10.1098/rsif.2009.0331 pmid: 2874234
[36] Zhang H, Shen P, Shaga A, et al. Preparation of nacre-like composites by reactive infiltration of a magnesium alloy into porous silicon carbide derived from ice template [J]. Mater. Lett., 2016, 183: 299
doi: 10.1016/j.matlet.2016.07.126
[37] Yang F, Kong F T, Chen Y Y, et al. Effect of spark plasma sintering temperature on the microstructure and mechanical properties of a Ti2AlC/TiAl composite [J]. J. Alloys Compd., 2010, 496: 462
doi: 10.1016/j.jallcom.2010.02.077
[38] Huang L J, Geng L, Wang B, et al. Effects of volume fraction on the microstructure and tensile properties of in situ TiBw/Ti6Al4V composites with novel network microstructure [J]. Mater. Des., 2013, 45: 532
doi: 10.1016/j.matdes.2012.09.043
[39] Wang H Y, Zhang H, Xu X Y, et al. Current research and future prospect on microstructure stability of superplastic light alloys [J]. Acta Metall. Sin., 2018, 54: 1618
[39] (王慧远, 张 行, 徐新宇等. 超塑性轻合金组织稳定性的研究进展及展望 [J]. 金属学报, 2018, 54: 1618)
[40] Jamian S, Watanabe Y, Sato H. Formation of compositional gradient in Al/SiC FGMs fabricated under huge centrifugal forces using solid-particle and mixed-powder methods [J]. Ceram. Int., 2019, 45: 9444
doi: 10.1016/j.ceramint.2018.08.315
[41] Tammas-Williams S, Todd I. Design for additive manufacturing with site-specific properties in metals and alloys [J]. Scr. Mater., 2017, 135: 105
doi: 10.1016/j.scriptamat.2016.10.030
[42] Wong J C, Paramsothy M, Gupta M. Using Mg and Mg-nanoAl2O3 concentric alternating macro-ring material design to enhance the properties of magnesium [J]. Compos. Sci. Technol., 2009, 69: 438
doi: 10.1016/j.compscitech.2008.11.009
[43] Feng S W, Guo Q, Li Z, et al. Strengthening and toughening mechanisms in graphene-Al nanolaminated composite micro-pillars [J]. Acta Mater., 2017, 125: 98
doi: 10.1016/j.actamat.2016.11.043
[1] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[2] 田银宝 申俊琦 胡绳荪 勾健. 丝材 + 电弧增材制造钛/铝异种金属反应层的研究[J]. 金属学报, 0, (): 0-0.
[3] 马国楠 王东 刘振宇 毕胜 昝宇宁 肖伯律 马宗义. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 0, (): 0-0.
[4] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[5] 石章智 张敏 黄雪飞 刘雪峰 张文征. 可时效强化Mg-Sn基合金的研究进展[J]. 金属学报, 0, (): 0-0.
[6] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[7] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[8] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[9] 赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1): 1-15.
[10] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[11] 石章智, 刘雪峰. Mg中双拉伸孪晶及其构成的复合孪晶结构[J]. 金属学报, 2018, 54(12): 1715-1724.
[12] 刘佳琳, 王玉敏, 张国兴, 张旭, 杨丽娜, 杨青, 杨锐. SiC单纤维增强TC17复合材料横向拉伸性能研究[J]. 金属学报, 2018, 54(12): 1809-1817.
[13] 于菁, 王继杰, 倪丁瑞, 肖伯律, 马宗义, 潘兴龙. 电子束熔丝沉积快速成形2319铝合金的微观组织与力学性能[J]. 金属学报, 2018, 54(12): 1725-1734.
[14] 徐磊, 郭瑞鹏, 吴杰, 卢正冠, 杨锐. 钛合金粉末热等静压近净成形研究进展[J]. 金属学报, 2018, 54(11): 1537-1552.
[15] 毛轶哲, 李建国, 封蕾. 573 K高温时效处理的Al-10Mg合金中粗大β(Al3Mg2)相对热压缩组织演化的影响及机理[J]. 金属学报, 2018, 54(10): 1451-1460.