Please wait a minute...
金属学报  2017, Vol. 53 Issue (12): 1651-1658    DOI: 10.11900/0412.1961.2017.00025
  本期目录 | 过刊浏览 |
铝合金薄板高转速搅拌摩擦焊接头组织与力学性能
刘奋军1,2, 傅莉1,3,4(), 陈海燕1,3,4
1 西北工业大学材料学院 西安 710072
2 榆林学院能源工程学院 榆林 719000
3 西北工业大学凝固技术国家重点实验室 西安 710072
4 西北工业大学陕西省摩擦焊接工程技术重点实验室 西安 710072
Microstructures and Mechanical Properties of Thin Plate Aluminium Alloy Joint Prepared by High Rotational Speed Friction Stir Welding
Fenjun LIU1,2, Li FU1,3,4(), Haiyan CHEN1,3,4
1 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
2 College of Energy Engineering, Yulin University, Yulin 719000, China
3 State Key Laboratory of Solidification, Northwestern Polytechnical University, Xi'an 710072, China
4 Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(9228 KB)   HTML
摘要: 

采用高转速微型搅拌摩擦焊接工艺实现了0.8 mm厚6061-T6铝合金薄板对接。利用OM、SEM、TEM及EBSD等测试技术探讨了高转速对接头微观组织及力学性能的影响规律。结果表明,高转速焊接6061-T6薄板时,焊缝表面成型良好,焊缝各区域组织呈连续均匀过渡。与常规搅拌摩擦焊相比,高转速工艺下,焊缝区β-Mg2Si、S相(Al2CuMg)和Al8Fe2Si析出相数量增多,特别是长条状β-Mg2Si数量增多,焊缝区显微硬度值明显提升;转速8000 r/min、焊速1500 mm/min条件下,接头最大抗拉强度高达301.8 MPa,是母材抗拉强度(351.7 MPa)的85.8%;转速对6061-T6铝合金超薄板高转速搅拌摩擦焊对接接头抗拉强度影响较小,接头断裂模式为脆性断裂为主的韧-脆混合断裂。

关键词 6061-T6铝合金薄板高转速FSW组织抗拉强度    
Abstract

Aluminium alloys were widely applied in rail transit, ships and aerospace owing to their unique properties, such as low density, high strength and stiffness, outstanding corrosion resistance and low temperature performance. As a type of structure material, aluminium alloy joining was inevitable. However, these alloys were often considered very difficult to weld using traditional fusion welding technique since the welding seams were often accompanied with metallurgical defects, large deformation and stress. Friction stir welding (FSW), an innovative solid-state welding technology invented at the welding institute (TWI), was seen by designers as an effective joining methods in welding aluminium alloys due to low heat input, small stress-strain and environment friendly. In this work, 0.8 mm thick plate of 6061-T6 aluminium alloy was successfully welded by use of high rotational speed fiction stir welding technology. The microstructure and mechanical property of the butt joints prepared by high rotational speed friction stir welding were analysed in detail. The results show that the well surface topography and excellent bonding interface existed in the nugget zone (NZ) were observed. Both of the microhardness of the weld seam was lower than that of the substrate. The lowest microhardness of the butt joints located between the thermo-mechanically affected zone (TMAZ) and heat affected zone (HAZ). Compared with the conventional rotational speed, the number of β-Mg2Si, Al2CuMg and Al8Fe2Si precipitated phases existed in the NZ was more, which made the microhardness in the NZ improved significantly. The rod-shaped precipitates (Mg2Si) have the greatest influence on the microhardness. The excellent mechanical properties were obtained at the rotational speed of 8000 r/min and welding speed of 1500 mm/min. The maximum tensile strength was 301.8 MPa, which was 85.8% of the as-received 6061-T6 (351.7 MPa). And the toughness-brittleness fracture mode appeared.

Key wordsthin plate 6061-T6 aluminium alloy    high rotational speed    friction stir welding (FSW)    microstructure    tensile property
收稿日期: 2017-01-19      出版日期: 2017-06-05
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目No.51575450,陕西省重点科技创新团队计划项目No.2014KCT-12,陕西省自然科学基础研究计划项目No.S2016YFJZ0164,凝固技术国家重点实验室自主研究课题项目No.127-QP-2015
作者简介:

作者简介 刘奋军,男,1982年生,博士生

引用本文:

刘奋军, 傅莉, 陈海燕. 铝合金薄板高转速搅拌摩擦焊接头组织与力学性能[J]. 金属学报, 2017, 53(12): 1651-1658.
Fenjun LIU, Li FU, Haiyan CHEN. Microstructures and Mechanical Properties of Thin Plate Aluminium Alloy Joint Prepared by High Rotational Speed Friction Stir Welding. Acta Metall Sin, 2017, 53(12): 1651-1658.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2017.00025      或      http://www.ams.org.cn/CN/Y2017/V53/I12/1651

图1  6061-T6铝合金薄板搅拌摩擦焊(FSW)示意图及拉伸试样取样图
图2  不同转速下6061-T6铝合金薄板FSW焊缝表面成型宏观形貌
图3  不同转速下6061-T6铝合金薄板FSW接头宏观形貌
图4  不同转速下6061-T6铝合金FSW接头微观组织
图5  不同转速下6061-T6铝合金FSW接头析出相形貌及分布明场像
图6  转速8000 r/min下6061-T6铝合金FSW接头不同区域(图3b)晶粒分布特征
图7  图6中6061-T6铝合金FSW接头不同位置处晶粒分布
图8  不同转速下6061-T6铝合金FSW接头显微硬度分布
图9  转速8000 r/min下6061-T6铝合金薄板FSW接头焊核区晶界分布
ω / (rmin-1) v / (mmmin-1) σUTS / MPa σYS / MPa δ / %
0 0 351.7 296.8 21.50
2000 300 239.0 179.2 4.80
7000 1500 289.4 207.8 4.88
8000 1500 301.8 216.6 5.39
9000 1500 300.8 213.0 5.44
10000 1500 292.6 205.7 5.31
11000 1500 292.2 201.8 5.49
表1  6061-T6母材及不同转速下FSW对接接头拉伸性能
图10  转速8000 r/min下6061-T6铝合金FSW接头拉伸断口形貌
[1] Rhodes C G, Mahoney M W, Bingel W H, et al.Effects of friction stir welding on microstructure of 7075 aluminum[J]. Scr. Mater., 1997, 36: 69
[2] Da Silvada A A M, Arruti E, Janeiro G, et al. Material flow and mechanical behaviour of dissimilar AA2024-T3 and AA7075-T6 aluminium alloys friction stir welds[J]. Mater. Des., 2011, 32: 2021
[3] Mishra R S, Ma Z Y.Friction stir welding and processing[J]. Mater. Sci. Eng., 2005, R50: 1
[4] Threadgill P L, Leonard A J, Shercliff H R, et al.Friction stir welding of aluminium alloys[J]. Int. Mater. Rev., 2009, 54: 49
[5] Nandan R, DebRoy T, Bhadeshia H K D H. Recent advances in friction stir welding—Process, weldment structure and properties[J]. Prog. Mater. Sci., 2008, 53: 980
[6] Wang T, Zou Y, Matsuda K.Micro-structure and micro-textural studies of friction stir welded AA6061-T6 subjected to different rotation speeds[J]. Mater. Des., 2016, 90: 13
[7] Liu F C, Ma Z Y.Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction stir welded 6061-T651 aluminum alloy[J]. Metall. Mater. Trans., 2008, 39A: 2378
[8] Guo J F, Chen H C, Sun C N, et al.Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters[J]. Mater. Des., 2014, 56: 185
[9] Liu H J, Hou J C, Guo H.Effect of welding speed on microstructure and mechanical properties of self-reacting friction stir welded 6061-T6 aluminum alloy[J]. Mater. Des., 2013, 50: 872
[10] He C, Liu Y J, Dong J F, et al.Through thickness property variations in friction stir welded AA6061 joint fatigued in very high cycle fatigue regime[J]. Int. J. Fatigue, 2016, 82: 379
[11] Rodrigues D M, Loureiro A, Leitao C, et al.Influence of friction stir welding parameters on the microstructural and mechanical properties of AA 6016-T4 thin welds[J]. Mater. Des., 2009, 30: 1913
[12] Galvao I, Leitao C, Loureiro A, et al.Friction stir welding of very thin plates[J]. Soldag. Insp. Sao. Paulo., 2012, 17: 2
[13] Leal R M, Leit?o C, Loureiro A, et al.Material flow in heterogeneous friction stir welding of thin aluminium sheets: Effect of shoulder geometry[J]. Mater. Sci. Eng., 2008, A498: 384
[14] Scialpi A, De Filippis L A C, Cavaliere P. Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy[J]. Mater. Des., 2007, 28: 1124
[15] De Giorgi M, Scialpi A, Panella F W, et al.Effect of shoulder geometry on residual stress and fatigue properties of AA6082 FSW joints[J]. J. Mech. Sci. Technol., 2009, 23: 26
[16] Scialpi A, De Giorgi M, De Filippis L A C, et al. Mechanical analysis of ultra-thin friction stir welding joined sheets with dissimilar and similar materials[J]. Mater. Des., 2008, 29: 928
[17] Murr L E, Liu G, McClure J C. A TEM study of precipitation and related microstructures in friction-stir-welded 6061 aluminium[J]. J. Mater. Sci., 1998, 33: 1243
[18] Zhao H H, Feng X S, Xiong Y Y, et al.Microstructure and properties of micro friction stir welded joint of Al-alloy ultra thin plate with zero tilt angle[J]. Trans. China Weld. Inst., 2014, 35(7): 47(赵慧慧, 封小松, 熊艳艳等. 铝合金超薄板无倾角微搅拌摩擦焊接头组织性能[J]. 焊接学报, 2014, 35(7): 47)
[19] Schmidt H, Hattel J, Wert J.An analytical model for the heat generation in friction stir welding[J]. Model. Simul. Mater. Sci. Eng., 2004, 12: 143
[20] Schmidt H B, Hattel J H.Thermal modelling of friction stir welding[J]. Scr. Mater., 2008, 58: 332
[21] Chen H Y, Fu Li, Liang P.Microstructure, texture and mechanical properties of friction stir welded butt joints of 2A97 Al-Li alloy ultra-thin sheets[J]. J. Alloys Compd., 2017, 692: 155
[22] Malopheyev S, Vysotskiy I, Kulitskity V, et al.Optimization of processing-microstructure-properties relationship in friction-stir welded 6061-T6 aluminum alloy[J]. Mater. Sci. Eng., 2016, A662: 136
[23] Liu F J, Fu L, Zhang W Y, et al.Interface structure and mechanical pro-perties of friction stir welding joint of 2099-T83/2060-T8 dissimilar Al-Li alloys[J]. Acta Metall. Sin., 2015, 51: 281(刘奋军, 傅莉, 张纹源等. 2099-T83/2060-T8异质Al-Li合金搅拌摩擦焊搭接界面结构与力学性能[J]. 金属学报, 2015, 51: 281)
[24] Sato Y S, Kokawa H, Enomoto M, et al.Microstructural evolution of 6063 aluminum during friction-stir welding[J]. Metall. Mater. Trans., 1999, 30A: 2429
[25] Sato Y S, Urata M, Kokawa H, et al.Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys[J]. Mater. Sci. Eng., 2003, A354: 298
[26] Sattari S, Bisadi H, Sajed M.Mechanical properties and temperature distributions of thin friction stir welded sheets of AA5083[J]. Int. J. Mech. Appl., 2012, 2: 1
[1] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[2] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.
[3] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
[4] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[5] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[6] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[7] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[8] 陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.
[9] 冯汉臣,闵学刚,魏大圣,周立初,崔世云,方峰. 低温回火对超大形变冷拔珠光体钢丝显微组织和力学性能的影响[J]. 金属学报, 2019, 55(5): 585-592.
[10] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[11] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[12] 刘耀鸿,王朝辉,刘轲,李淑波,杜文博. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响[J]. 金属学报, 2019, 55(3): 389-398.
[13] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[14] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[15] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.