Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 513-523    DOI: 10.11900/0412.1961.2016.00576
  论文 本期目录 | 过刊浏览 |
中国低活化马氏体钢在液态Pb-Bi中的脆化现象
杨旭1,2,廖波1,刘坚2,严伟2,单以银2,肖福仁1,杨柯2()
1 燕山大学材料科学与工程学院 秦皇岛066004
2 中国科学院金属研究所 沈阳110016
Embrittlement Phenomenon of China Low Activation Martensitic Steel in Liquid Pb-Bi
Xu YANG1,2,Bo LIAO1,Jian LIU2,Wei YAN2,Yiyin SHAN2,Furen XIAO1,Ke YANG2()
1 College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016,China
全文: PDF(16832 KB)   HTML
摘要: 

为了评价反应堆候选结构材料与液态金属的相容性,针对低活化马氏体钢在液态Pb-Bi共晶中的拉伸脆化现象,采用2种拉伸速率的拉伸实验,研究了中国低活化马氏体钢(CLAM)在200~500 ℃范围内的Ar气和液态Pb-Bi共晶环境中的拉伸断裂行为。结果表明,在Ar气环境中拉伸时,CLAM钢均为韧性断裂;而在液态Pb-Bi共晶环境中拉伸时,在300~450 ℃下会出现脆性断裂现象。在300~450 ℃脆化温度区间内试样强度变化不大,但总延伸率显著降低,出现“韧谷”现象。然而拉伸温度在低于或高于脆化温度区间时,脆断现象消失,总延伸率回复到与对比试样相同水平。在更低的拉伸速率下,CLAM钢发生“韧谷”现象的温度区间明显扩大,表明拉伸速率对CLAM钢在液态Pb-Bi共晶中的脆化也有影响。经低温回火硬化后,CLAM钢在液态Pb-Bi共晶中出现拉伸脆化现象是由于液态Pb-Bi接触裂纹尖端后造成表面能降低,进而降低临界解理应力而发生脆性断裂。

关键词 CLAM钢液态金属脆化Pb-Bi共晶温度应变速率    
Abstract

China low activation martensitic (CLAM) steel has been considered as the primary candidate structural material for application in fusion systems because of its good thermal conductivity and low thermal expansion ratio. In this work, the tensile behavior of the CLAM steel in liquid lead-bismuth eutectic was investigated to assess the compatibility of CLAM steel with liquid metal. The CLAM steel was tempered before test. The tensile tests were performed in liquid lead-bismuth eutectic and argon gas respectively at different temperatures ranging from 200 ℃ to 500 ℃ under different strain rates. All the specimens ruptured in ductile manner in argon gas environment, exhibiting obvious necking and dimples on the fracture surface. For those tested in liquid lead-bismuth eutectic, the specimens behaved ductile fracture when the test temperature was below 250 ℃, but fractured in brittle cleavage manner in the temperature range of 300~450 ℃. The embrittlement mainly occurred after necking, showing typical river pattern on the fracture surface with slight necking trace, and obvious cracking points were observed to initiate at the fracture edge and propagated towards the center of the specimen, namely, the appearance of the ductility trough that shows significant degradation in total elongation while no noticeable differences in strength compared with the tested specimens in argon gas environment. Furthermore, the brittle fracture disappeared and total elongation recovered when the tensile tests were performed out of the embrittlement temperature range. In slower strain rate tensile (SSRT) tests, the temperature range of the ductility trough greatly expanded and brittle fracture occurred at temperatures below 250 ℃. The results indicate that CLAM steel is susceptible to embrittlement in liquid lead-bismuth eutectic. This is because the contact of the liquid metal with the cracking tip leads to a decrease of the interfacial energy, which further reduces the critical cleavage stress and facilitates the brittle fracture. Both temperature and strain rate are evidenced in this work to have an effect on the embrittlement of CLAM steel.

Key wordsCLAM steel    liquid metal embrittlement    Pb-Bi eutectic    temperature    strain rate
收稿日期: 2016-12-27      出版日期: 2017-03-10

引用本文:

杨旭, 廖波, 刘坚, 严伟, 单以银, 肖福仁, 杨柯. 中国低活化马氏体钢在液态Pb-Bi中的脆化现象[J]. 金属学报, 2017, 53(5): 513-523.
Xu YANG, Bo LIAO, Jian LIU, Wei YAN, Yiyin SHAN, Furen XIAO, Ke YANG. Embrittlement Phenomenon of China Low Activation Martensitic Steel in Liquid Pb-Bi. Acta Metall Sin, 2017, 53(5): 513-523.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00576      或      http://www.ams.org.cn/CN/Y2017/V53/I5/513

图1  静态液态金属拉伸实验夹具示意图
图2  中国低活化马氏体(CLAM)钢在250~500 ℃、Ar气和Pb-Bi共晶中拉伸速率为0.15 mm/min时的拉伸曲线
图3  CLAM钢在200~500 ℃、Ar气和Pb-Bi共晶中拉伸速率为0.015 mm/min时的拉伸曲线
图4  不同拉伸速率下CLAM钢在Ar气和液态Pb-Bi共晶环境中的强度变化
图5  不同拉伸速率下CLAM钢在Ar气和液态Pb-Bi共晶环境中的总延伸率变化
图 6  CLAM钢在250~500 ℃、Ar气中拉伸速率为0.15 mm/min时拉伸断口的宏观和微观断口形貌的SEM像
图7  CLAM钢在250~500 ℃液态Pb-Bi中拉伸速率为0.15 mm/min时拉伸断口的宏观和微观断口形貌的SEM像
图8  CLAM钢在200~500 ℃、Ar气中拉伸速率为0.015 mm/min时拉伸断口的宏观和微观断口形貌的SEM像
图9  CLAM钢在200~500 ℃液态Pb-Bi中拉伸速率为0.015 mm/min时拉伸断口的宏观和微观断口形貌的SEM像
[1] Liu S J, Huang Q Y, Peng L, et al.Microstructure and its influence on mechanical properties of CLAM steel[J]. Fusion. Eng. Des., 2012, 87: 1628
[2] Kurtz R J, Alamo A, Lucon E, et al. Recent progress toward deve-lopment of reduced activation ferritic/martensitic steels for fusion structural applications [J]. J. Nucl. Mater., 2009, 386-388: 411
[3] Muroga T, Gasparotto M, Zinkle S J. Overview of materials research for fusion reactors [J]. Fusion. Eng. Des., 2002, 61-62: 13
[4] Jones R H, Heinisch H L, McCarthy K A. Low activation materials [J]. J. Nucl. Mater., 1999, 271-272: 518
[5] Chen X Z, Yuan Q B, Madigan B, et al.Long-term corrosion behavior of martensitic steel welds in static molten Pb-17Li alloy at 550 ℃[J]. Corros. Sci., 2015, 96: 178
[6] Konys J, Krauss W, Voss Z, et al. Corrosion behavior of EUROFER steel in flowing eutectic Pb-17Li alloy [J]. J. Nucl. Mater., 2004, 329-333: 1379
[7] Dai Y, Long B, Groeschel F.Slow strain rate tensile tests on T91 in static lead-bismuth eutectic[J]. J. Nucl. Mater., 2006, 356: 222
[8] Van den Bosch J, Coen G, Hosemann P, et al. On the LME susceptibility of Si enriched steels[J]. J. Nucl. Mater., 2012, 429: 105
[9] Hamouche-Hadjem Z, Auger T, Guillot I, et al.Susceptibility to LME of 316L and T91 steels by LBE: Effect of strain rate[J]. J. Nucl. Mater., 2008, 376: 317
[10] Van den Bosch J, Sapundjiev D, Almazouzi A. Effects of temperature and strain rate on the mechanical properties of T91 material tested in liquid lead bismuth eutectic[J]. J. Nucl. Mater., 2006, 356: 237
[11] Long B, Tong Z, Gröschel F, et al.Liquid Pb-Bi embrittlement effects on the T91 steel after different heat treatments[J]. J. Nucl. Mater., 2008, 377: 219
[12] Liu J, Huang Q Y, Jiang Z Z, et al.Effect of strain rate on the mechanical properties of CLAM steel in liquid PbLi eutectic[J]. Fusion. Eng. Des., 2013, 88: 2603
[13] Van den Bosch J, Bosch R W, Sapundjiev D, et al. Liquid metal embrittlement susceptibility of ferritic-martensitic steel in liquid lead alloys[J]. J. Nucl. Mater., 2008, 376: 322
[14] Legris A, Nicaise G, Vogt J B, et al.Embrittlement of a martensitic steel by liquid lead[J]. Scr. Mater., 2000, 43: 997
[15] Nicaise G, Legris A, Vogt J B, et al.Embrittlement of the martensitic steel 91 tested in liquid lead[J]. J. Nucl. Mater., 2001, 296: 256
[16] Dai Y, Long B, Jia X, et al.Tensile tests and TEM investigations on LiSoR-2 to -4[J]. J. Nucl. Mater., 2006, 356: 256
[17] Dai Y, Wagner W.Materials researches at the Paul Scherrer Institute for developing high power spallation targets[J]. J. Nucl. Mater., 2009, 389: 288
[18] Van den Bosch J, Coen G, Bosch R W, et al. TWIN ASTIR: First tensile results of T91 and 316L steel after neutron irradiation in contact with liquid lead-bismuth eutectic[J]. J. Nucl. Mater., 2010, 398: 68
[19] Long B, Dai Y, Baluc N.Investigation of liquid LBE embrittlement effects on irradiated ferritic/martensitic steels by slow-strain-rate tensile tests[J]. J. Nucl. Mater., 2012, 431: 85
[20] Joseph B, Picat M, Barbier F.Liquid metal embrittlement: A state-of-the-art appraisal[J]. Eur. Phys. J. Appl. Phys., 1999, 5: 19
[21] Shchukin E D.Physical-chemical mechanics in the studies of Peter A. Rehbinder and his school[J]. Colloids. Surf., 1999, 149A: 529
[22] Stoloff N S, Johnston T L.Crack propagation in a liquid metal environment[J]. Acta Metall., 1963, 11: 251
[23] Ye C Q, Vogt J B, Serre I P.Liquid metal embrittlement of the T91 steel in lead bismuth eutectic: The role of loading rate and of the oxygen content in the liquid metal[J]. Mater. Sci. Eng., 2014, A608: 242
[24] Hémery S, Auger T, Courouau J L, et al.Effect of oxygen on liquid sodium embrittlement of T91 martensitic steel[J]. Corros. Sci., 2013, 76: 441
[25] Martı?n F J, Soler L, Hernández F, et al. Oxide layer stability in lead-bismuth at high temperature[J]. J. Nucl. Mater., 2004, 335: 194
[1] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[2] 李文涛,王振玉,张栋,潘建国,柯培玲,汪爱英. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层[J]. 金属学报, 2019, 55(5): 647-656.
[3] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[4] 何东昱,刘玉欣. 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3铁电薄膜90°分步畴转与温度效应[J]. 金属学报, 2019, 55(3): 325-331.
[5] 王瑾, 余黎明, 李冲, 黄远, 李会军, 刘永长. 不同温度对含与不含位错α-Fe中He原子行为的影响[J]. 金属学报, 2019, 55(2): 274-280.
[6] 徐士新, 余伟, 李舒笳, 王坤, 孙齐松. 预变形温度对纳米贝氏体相变动力学及组织的影响[J]. 金属学报, 2018, 54(8): 1113-1121.
[7] 屈少鹏, 程柏璋, 董丽华, 尹衍升, 杨丽景. 2205钢在模拟深海热液区中的腐蚀行为[J]. 金属学报, 2018, 54(8): 1094-1104.
[8] 刘林, 孙德建, 黄太文, 张琰斌, 李亚峰, 张军, 傅恒志. 高梯度定向凝固技术及其在高温合金制备中的应用[J]. 金属学报, 2018, 54(5): 615-626.
[9] 李旭东, 毛萍莉, 刘晏宇, 刘正, 王志, 王峰. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制[J]. 金属学报, 2018, 54(4): 557-565.
[10] 刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484.
[11] 程钊, 金帅, 卢磊. 电解液温度对直流电解沉积纳米孪晶Cu微观结构的影响[J]. 金属学报, 2018, 54(3): 428-434.
[12] 种晓宇, 汪广驰, 杜军, 蒋业华, 冯晶. ZTAp/HCCI复合材料凝固过程中的温度场和热应力的数值模拟[J]. 金属学报, 2018, 54(2): 314-324.
[13] 胡磊, 王学, 尹孝辉, 刘洪, 马群双. 层间温度对9%Cr热强钢管道多层多道焊接头残余应力的影响[J]. 金属学报, 2018, 54(12): 1767-1776.
[14] 张凯, 陈银莉, 孙彦辉, 徐志军. 加热过程中H2O(g)对55SiCr弹簧钢脱碳的影响[J]. 金属学报, 2018, 54(10): 1350-1358.
[15] 李细锋, 陈楠楠, 李佼佼, 何雪婷, 刘红兵, 郑兴伟, 陈军. 温度与应变速率对Invar 36合金变形行为的影响[J]. 金属学报, 2017, 53(8): 968-974.