Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 513-523    DOI: 10.11900/0412.1961.2016.00576
  论文 本期目录 | 过刊浏览 |
1 燕山大学材料科学与工程学院 秦皇岛066004
2 中国科学院金属研究所 沈阳110016
Embrittlement Phenomenon of China Low Activation Martensitic Steel in Liquid Pb-Bi
Xu YANG1,2,Bo LIAO1,Jian LIU2,Wei YAN2,Yiyin SHAN2,Furen XIAO1,Ke YANG2()
1 College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016,China
全文: PDF(16832 KB)   HTML

为了评价反应堆候选结构材料与液态金属的相容性,针对低活化马氏体钢在液态Pb-Bi共晶中的拉伸脆化现象,采用2种拉伸速率的拉伸实验,研究了中国低活化马氏体钢(CLAM)在200~500 ℃范围内的Ar气和液态Pb-Bi共晶环境中的拉伸断裂行为。结果表明,在Ar气环境中拉伸时,CLAM钢均为韧性断裂;而在液态Pb-Bi共晶环境中拉伸时,在300~450 ℃下会出现脆性断裂现象。在300~450 ℃脆化温度区间内试样强度变化不大,但总延伸率显著降低,出现“韧谷”现象。然而拉伸温度在低于或高于脆化温度区间时,脆断现象消失,总延伸率回复到与对比试样相同水平。在更低的拉伸速率下,CLAM钢发生“韧谷”现象的温度区间明显扩大,表明拉伸速率对CLAM钢在液态Pb-Bi共晶中的脆化也有影响。经低温回火硬化后,CLAM钢在液态Pb-Bi共晶中出现拉伸脆化现象是由于液态Pb-Bi接触裂纹尖端后造成表面能降低,进而降低临界解理应力而发生脆性断裂。

关键词 CLAM钢液态金属脆化Pb-Bi共晶温度应变速率    

China low activation martensitic (CLAM) steel has been considered as the primary candidate structural material for application in fusion systems because of its good thermal conductivity and low thermal expansion ratio. In this work, the tensile behavior of the CLAM steel in liquid lead-bismuth eutectic was investigated to assess the compatibility of CLAM steel with liquid metal. The CLAM steel was tempered before test. The tensile tests were performed in liquid lead-bismuth eutectic and argon gas respectively at different temperatures ranging from 200 ℃ to 500 ℃ under different strain rates. All the specimens ruptured in ductile manner in argon gas environment, exhibiting obvious necking and dimples on the fracture surface. For those tested in liquid lead-bismuth eutectic, the specimens behaved ductile fracture when the test temperature was below 250 ℃, but fractured in brittle cleavage manner in the temperature range of 300~450 ℃. The embrittlement mainly occurred after necking, showing typical river pattern on the fracture surface with slight necking trace, and obvious cracking points were observed to initiate at the fracture edge and propagated towards the center of the specimen, namely, the appearance of the ductility trough that shows significant degradation in total elongation while no noticeable differences in strength compared with the tested specimens in argon gas environment. Furthermore, the brittle fracture disappeared and total elongation recovered when the tensile tests were performed out of the embrittlement temperature range. In slower strain rate tensile (SSRT) tests, the temperature range of the ductility trough greatly expanded and brittle fracture occurred at temperatures below 250 ℃. The results indicate that CLAM steel is susceptible to embrittlement in liquid lead-bismuth eutectic. This is because the contact of the liquid metal with the cracking tip leads to a decrease of the interfacial energy, which further reduces the critical cleavage stress and facilitates the brittle fracture. Both temperature and strain rate are evidenced in this work to have an effect on the embrittlement of CLAM steel.

Key wordsCLAM steel    liquid metal embrittlement    Pb-Bi eutectic    temperature    strain rate
收稿日期: 2016-12-27      出版日期: 2017-03-10


杨旭, 廖波, 刘坚, 严伟, 单以银, 肖福仁, 杨柯. 中国低活化马氏体钢在液态Pb-Bi中的脆化现象[J]. 金属学报, 2017, 53(5): 513-523.
Xu YANG, Bo LIAO, Jian LIU, Wei YAN, Yiyin SHAN, Furen XIAO, Ke YANG. Embrittlement Phenomenon of China Low Activation Martensitic Steel in Liquid Pb-Bi. Acta Metall, 2017, 53(5): 513-523.

链接本文:      或

图1  静态液态金属拉伸实验夹具示意图
图2  中国低活化马氏体(CLAM)钢在250~500 ℃、Ar气和Pb-Bi共晶中拉伸速率为0.15 mm/min时的拉伸曲线
图3  CLAM钢在200~500 ℃、Ar气和Pb-Bi共晶中拉伸速率为0.015 mm/min时的拉伸曲线
图4  不同拉伸速率下CLAM钢在Ar气和液态Pb-Bi共晶环境中的强度变化
图5  不同拉伸速率下CLAM钢在Ar气和液态Pb-Bi共晶环境中的总延伸率变化
图 6  CLAM钢在250~500 ℃、Ar气中拉伸速率为0.15 mm/min时拉伸断口的宏观和微观断口形貌的SEM像
图7  CLAM钢在250~500 ℃液态Pb-Bi中拉伸速率为0.15 mm/min时拉伸断口的宏观和微观断口形貌的SEM像
图8  CLAM钢在200~500 ℃、Ar气中拉伸速率为0.015 mm/min时拉伸断口的宏观和微观断口形貌的SEM像
图9  CLAM钢在200~500 ℃液态Pb-Bi中拉伸速率为0.015 mm/min时拉伸断口的宏观和微观断口形貌的SEM像
[1] Liu S J, Huang Q Y, Peng L, et al.Microstructure and its influence on mechanical properties of CLAM steel[J]. Fusion. Eng. Des., 2012, 87: 1628
[2] Kurtz R J, Alamo A, Lucon E, et al. Recent progress toward deve-lopment of reduced activation ferritic/martensitic steels for fusion structural applications [J]. J. Nucl. Mater., 2009, 386-388: 411
[3] Muroga T, Gasparotto M, Zinkle S J. Overview of materials research for fusion reactors [J]. Fusion. Eng. Des., 2002, 61-62: 13
[4] Jones R H, Heinisch H L, McCarthy K A. Low activation materials [J]. J. Nucl. Mater., 1999, 271-272: 518
[5] Chen X Z, Yuan Q B, Madigan B, et al.Long-term corrosion behavior of martensitic steel welds in static molten Pb-17Li alloy at 550 ℃[J]. Corros. Sci., 2015, 96: 178
[6] Konys J, Krauss W, Voss Z, et al. Corrosion behavior of EUROFER steel in flowing eutectic Pb-17Li alloy [J]. J. Nucl. Mater., 2004, 329-333: 1379
[7] Dai Y, Long B, Groeschel F.Slow strain rate tensile tests on T91 in static lead-bismuth eutectic[J]. J. Nucl. Mater., 2006, 356: 222
[8] Van den Bosch J, Coen G, Hosemann P, et al. On the LME susceptibility of Si enriched steels[J]. J. Nucl. Mater., 2012, 429: 105
[9] Hamouche-Hadjem Z, Auger T, Guillot I, et al.Susceptibility to LME of 316L and T91 steels by LBE: Effect of strain rate[J]. J. Nucl. Mater., 2008, 376: 317
[10] Van den Bosch J, Sapundjiev D, Almazouzi A. Effects of temperature and strain rate on the mechanical properties of T91 material tested in liquid lead bismuth eutectic[J]. J. Nucl. Mater., 2006, 356: 237
[11] Long B, Tong Z, Gröschel F, et al.Liquid Pb-Bi embrittlement effects on the T91 steel after different heat treatments[J]. J. Nucl. Mater., 2008, 377: 219
[12] Liu J, Huang Q Y, Jiang Z Z, et al.Effect of strain rate on the mechanical properties of CLAM steel in liquid PbLi eutectic[J]. Fusion. Eng. Des., 2013, 88: 2603
[13] Van den Bosch J, Bosch R W, Sapundjiev D, et al. Liquid metal embrittlement susceptibility of ferritic-martensitic steel in liquid lead alloys[J]. J. Nucl. Mater., 2008, 376: 322
[14] Legris A, Nicaise G, Vogt J B, et al.Embrittlement of a martensitic steel by liquid lead[J]. Scr. Mater., 2000, 43: 997
[15] Nicaise G, Legris A, Vogt J B, et al.Embrittlement of the martensitic steel 91 tested in liquid lead[J]. J. Nucl. Mater., 2001, 296: 256
[16] Dai Y, Long B, Jia X, et al.Tensile tests and TEM investigations on LiSoR-2 to -4[J]. J. Nucl. Mater., 2006, 356: 256
[17] Dai Y, Wagner W.Materials researches at the Paul Scherrer Institute for developing high power spallation targets[J]. J. Nucl. Mater., 2009, 389: 288
[18] Van den Bosch J, Coen G, Bosch R W, et al. TWIN ASTIR: First tensile results of T91 and 316L steel after neutron irradiation in contact with liquid lead-bismuth eutectic[J]. J. Nucl. Mater., 2010, 398: 68
[19] Long B, Dai Y, Baluc N.Investigation of liquid LBE embrittlement effects on irradiated ferritic/martensitic steels by slow-strain-rate tensile tests[J]. J. Nucl. Mater., 2012, 431: 85
[20] Joseph B, Picat M, Barbier F.Liquid metal embrittlement: A state-of-the-art appraisal[J]. Eur. Phys. J. Appl. Phys., 1999, 5: 19
[21] Shchukin E D.Physical-chemical mechanics in the studies of Peter A. Rehbinder and his school[J]. Colloids. Surf., 1999, 149A: 529
[22] Stoloff N S, Johnston T L.Crack propagation in a liquid metal environment[J]. Acta Metall., 1963, 11: 251
[23] Ye C Q, Vogt J B, Serre I P.Liquid metal embrittlement of the T91 steel in lead bismuth eutectic: The role of loading rate and of the oxygen content in the liquid metal[J]. Mater. Sci. Eng., 2014, A608: 242
[24] Hémery S, Auger T, Courouau J L, et al.Effect of oxygen on liquid sodium embrittlement of T91 martensitic steel[J]. Corros. Sci., 2013, 76: 441
[25] Martı?n F J, Soler L, Hernández F, et al. Oxide layer stability in lead-bismuth at high temperature[J]. J. Nucl. Mater., 2004, 335: 194
[1] 惠亚军, 潘辉, 刘锟, 李文远, 于洋, 陈斌, 崔阳. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制[J]. 金属学报, 2017, 53(8): 937-946.
[2] 李细锋, 陈楠楠, 李佼佼, 何雪婷, 刘红兵, 郑兴伟, 陈军. 温度与应变速率对Invar 36合金变形行为的影响[J]. 金属学报, 2017, 53(8): 968-974.
[3] 舒志强,袁鹏斌,欧阳志英,龚丹梅,白雪明. 回火温度对26CrMo钻杆钢显微组织和力学性能的影响[J]. 金属学报, 2017, 53(6): 669-676.
[4] 徐超, 佴启亮, 姚志浩, 江河, 董建新. 晶界氧化对GH4738高温合金疲劳裂纹扩展的作用[J]. 金属学报, 2017, 53(11): 1453-1460.
[5] 杨永,王昭东,李天瑞,贾涛,李小琳,王国栋. 一种第二相析出-温度-时间曲线计算模型的建立[J]. 金属学报, 2017, 53(1): 123-128.
[6] 蔡贇,孙朝阳,万李,阳代军,周庆军,苏泽兴. AZ80镁合金动态再结晶软化行为研究*[J]. 金属学报, 2016, 52(9): 1123-1132.
[7] 贾婷婷,坚增运,许军锋,朱满,常芳娥. Ge30Se70硫系玻璃的特征温度和性能*[J]. 金属学报, 2016, 52(6): 755-760.
[8] 张可,雍岐龙,孙新军,李昭东,赵培林. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响*[J]. 金属学报, 2016, 52(5): 529-537.
[9] 王海锋,苏海军,张军,黄太文,刘林,傅恒志. 熔体超温处理温度对新型镍基单晶高温合金溶质分配行为的影响*[J]. 金属学报, 2016, 52(4): 419-425.
[10] 陈亚东, 郑运荣, 冯强. 基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究*[J]. 金属学报, 2016, 52(12): 1545-1556.
[11] 薛鹏, 张星星, 吴利辉, 马宗义. 搅拌摩擦焊接与加工研究进展*[J]. 金属学报, 2016, 52(10): 1222-1238.
[12] 惠亚军,潘辉,周娜,李瑞恒,李文远,刘锟. 650 MPa级V-N微合金化汽车大梁钢强化机制研究*[J]. 金属学报, 2015, 51(12): 1481-1488.
[13] 李姣姣,坚增运,朱满,许军锋,常芳娥,相敏. GexSe90-xSb10硫系玻璃的热力学特性和动力学脆性研究*[J]. 金属学报, 2015, 51(11): 1384-1390.
[14] 姬书得,温泉,马琳,李继忠,张利. TC4钛合金搅拌摩擦焊厚度方向的显微组织*[J]. 金属学报, 2015, 51(11): 1391-1399.
[15] 孙朝阳, 黄杰, 郭宁, 杨竞. 基于位错密度的Fe-22Mn-0.6C型TWIP钢物理本构模型研究[J]. 金属学报, 2014, 50(9): 1115-1122.