Please wait a minute...
金属学报  2020, Vol. 56 Issue (4): 539-548    DOI: 10.11900/0412.1961.2019.00419
  综述 本期目录 | 过刊浏览 |
630~700 ℃超超临界燃煤电站耐热管及其制造技术进展
刘正东(),陈正宗,何西扣,包汉生
中国钢研科技集团有限公司 北京 100081
Systematical Innovation of Heat Resistant Materials Used for 630~700 ℃ Advanced Ultra-Supercritical (A-USC)Fossil Fired Boilers
LIU Zhengdong(),CHEN Zhengzong,HE Xikou,BAO Hansheng
China Iron and Steel Research Institute Group Co. Ltd. , Beijing 100081, China
引用本文:

刘正东,陈正宗,何西扣,包汉生. 630~700 ℃超超临界燃煤电站耐热管及其制造技术进展[J]. 金属学报, 2020, 56(4): 539-548.
Zhengdong LIU, Zhengzong CHEN, Xikou HE, Hansheng BAO. Systematical Innovation of Heat Resistant Materials Used for 630~700 ℃ Advanced Ultra-Supercritical (A-USC)Fossil Fired Boilers[J]. Acta Metall Sin, 2020, 56(4): 539-548.

全文: PDF(12467 KB)   HTML
摘要: 

迄今,600 ℃超超临界是世界最先进商用燃煤电站技术。630~700 ℃超超临界燃煤电站研发将奠定我国火电技术的国际领先地位,对实现国家节能减排目标具有重要战略意义。耐热材料是制约火电机组蒸汽温度进一步提升的技术瓶颈,本文简述了国内外630~700 ℃超超临界电站耐热材料研制现状,指出了我国急需研发的关键耐热材料。阐述了作者团队在多年实践中总结的电站耐热材料“全流程选择性冶金过程设计和选择性强韧化设计”观点,重点介绍了在该设计观点指导下,我国成功研发了用于630~650 ℃的马氏体耐热钢G115?,用于650~700 ℃的固溶强化型镍基耐热合金C-HRA-2?、C-HRA-3?,以及用于700~750 ℃的析出强化型镍基耐热合金C-HRA-1?,系统构建了我国630~700 ℃超超临界燃煤锅炉耐热材料体系,并已成功制造了上述新型耐热材料锅炉管。

关键词 630~700 ℃蒸汽温度超超临界燃煤锅炉新型耐热材料    
Abstract

To date, the 600 ℃ ultra-supercritical (USC) fossil fired power plant is the most advanced in the world. The research and development of 630~700 ℃ advanced ultra-supercritical (A-USC) fossil fired power plant will lay the thermal power technology in China in the international leading position, which is of important strategic significance to realize the national energy conservation and emissions reduction targets. Heat resistant material is the technical necking to further increase the steam parameter of thermal power plants. This paper briefed the-state-of-the-art of heat resistant materials used for 630~700 ℃ A-USC fossil fired power plant worldwide and clarified the critical candidate materials which are on the top priority to develop in China. The selective metallurgical processing design and selective strengthening mechanism, concluded by the author to design and improve heat resistant materials, was introduced. Under the guidance of the selective strengthening mechanism, G115? martensitic steel used for 630~650 ℃, C-HRA-2? and C-HRA-3? alloy used for 650~700 ℃, and C-HRA-1? alloy used for 700~750 ℃ have been successfully developed, which built a complete heat resistant material system to cover 630~700 ℃ A-USC fossil fired power plant. The boiler tubing and piping of these novel heat resistant materials have been industrially manufactured.

Key words630~700 ℃ steam temperature    advanced ultra-supercritical    fossil fired boiler    novel heat resistant material
收稿日期: 2019-12-09     
ZTFLH:  TB35  
基金资助:国家重点研发计划项目(2017YFB0305200)
作者简介: 刘正东,男,1966年生,教授级高级工程师,博士
MaterialCSiMnCrNiMoWCo
T/P910.08~0.120.20~0.400.30~0.508.0~9.5≤0.200.85~1.05≤0.05-
T/P920.07~0.13≤0.500.30~0.608.5~9.5≤0.400.30~0.601.50~2.00-
S304320.07~0.13≤0.30≤1.0017.0~19.07.5~10.5---
S310420.04~0.10≤1.0≤2.024.0~26.019.0~22.0---
Sanicro 250.04~0.10<0.40<0.6021.5~23.523.5~26.5-3.0~4.01.0~2.0
Inconel 6170.05~0.15≤1.0≤1.020.0~24.0Bal.8.0~10.0-10.0~15.0
Inconel 7400.005~0.08≤1.0≤1.023.5~25.5Bal.

≤2.0

-15.0~22.0
MaterialNbVTiNBCuFeStandard
T/P910.06~0.100.18~0.25≤0.010.035~0.070≤0.001≤0.10Bal.ASME SB 213/213M
T/P920.04~0.090.15~0.25≤0.010.030~0.0700.001~0.006-Bal.ASME SB 213/213M
S304320.30~0.60--

0.05~0.12

0.001~0.010

2.5~3.5

Bal.ASME SB 213/213M
S310420.20~0.60--0.15~0.35--Bal.ASME SB 213/213M
Sanicro 250.40~0.60--0.20~0.300.002~0.0082.5~3.5Bal.ASME SB 213/213M
Inconel 617--≤0.6-≤0.006≤0.5≤3.0ASME SB 167
Inconel 740

0.5~2.5

-0.5~2.5Al 0.2~2.00.0006~0.006

≤0.50

≤3.0ASME Code Case 2702
表1  典型锅炉管耐热材料化学成分 (mass fraction / %)
图1  G115?钢在650 ℃时效8000 h后马氏体板条的TEM像
图2  G115?钢在650和700 ℃时效过程中M23C6的粗化
图3  G115?和P92钢在650 ℃的持久曲线
图4  G115?和P92钢在650 ℃的抗蒸汽腐蚀性能
图5  G115?钢在蒸汽温度650 ℃、2000 h时的内层氧化皮结构
AlloyCrCoMoAlTiCBNbVZrWNiRef.
Inconel61720.0~24.010.0~15.08.0~10.00.8~1.5≤0.60.05~0.15≤0.006----Bal.ASME SB 167
Inconel617B21.0~23.011.0~13.08.0~10.00.8~1.30.25~0.500.05~0.080.001~0.005≤0.6≤0.6--Bal.DIN 2.4673
C-HRA-3?21.0~23.011.0~13.08.5~9.00.8~1.30.3~0.50.05~0.080.002~0.005≤0.1≤0.1≤0.10≤1.0Bal.[21]
C-HRA-2?21.0~23.011.0~13.08.5~9.0--0.05~0.080.002~0.005≤0.1-≤0.10≤1.0Bal.[22]
表2  Inconel617、Inconel617B、C-HRA-3?和C-HRA-2?合金的化学成分[21,22] (mass fraction / %)
图6  C-HRA-3?合金700 ℃的时效冲击功
图7  C-HRA-3?合金700 ℃的持久寿命
图8  C-HRA-2?耐热合金675和700 ℃时效后冲击功随时间的变化
图9  C-HRA-2?耐热合金650~700 ℃的持久寿命
图10  Inconel740H合金胞状碳化物的形貌、SAED谱及TEM像
图11  C-HRA-1?合金750和800 ℃的持久寿命
图12  我国600-630-700 ℃超超临界燃煤锅炉管耐热材料体系示意图
[1] Bugge J, Kj?r S, Blum R. High-efficiency coal-fired power plants development and perspectives [J]. Energy, 2006, 31: 1437
[2] Viswanathan R, Henry J F, Tanzosh J, et al. U.S. program on materials technology for ultra-supercritical coal power plants [J]. J. Mater. Eng. Perform., 2005, 14: 281
[3] Blum R, Vanstone R W, Messlier-Gouze C. Materials development for boilers and steam turbines operating at 700 ℃ [A]. Proceedings of the 4th International Conference on Advances in Materials Technology for Fossil Power Plants [C]. South Carolina: ASM International, 2005: 116
[4] Kl?wer J, Husemann R U, Bader M. Development of nickel alloys based on alloy 617 for components in 700 ℃ power plants [J]. Proced. Eng., 2013, 55: 226
[5] Viswanathan R, Coleman K, Rao U. Materials for ultra-supercritical coal-fired power plant boilers [J]. Int. J Press. Vessels Pip., 2006, 83: 778
[6] Rautio R, Bruce S. Sandvik Sanicro25, a new material for ultra-supercritical coal fired boilers [A]. Proceedings of the 4th International Conference on Advances in Materials Technology for Fossil Power Plants [C]. South Carolina: ASM International, 2005: 274
[7] Du J H, Lv X D, Dong J X, et al. Research progress of wrought superalloys in China [J]. Acta Metall. Sin., 2019, 55: 1115
[7] 杜金辉, 吕旭东, 董建新等. 国内变形高温合金研制进展 [J]. 金属学报, 2019, 55: 1115
[8] Liu Z D, Cheng S C, Wang Q J, et al. Advancement of Chinese Boiler Steels Used for 600 ℃ USC Power Plants [M]. Beijing: Metallurgical Industry Press, 2011: 339
[8] 刘正东, 程世长, 王起江等. 中国600 ℃火电机组锅炉钢进展 [M]. 北京: 冶金工业出版社, 2011: 339
[9] Liu Z D. Design and Practice of Heat Resistant Materials Based on Selective-Strengthening Theory for Power Station [M]. Beijing: Metallurgical Industry Press, 2017: 337
[9] 刘正东. 电站耐热材料的选择性强化设计与实践 [M]. 北京: 冶金工业出版社, 2017: 337
[10] Liu R Z. Strengthening Mechanism of Low Alloy Heat Resistant Steel [M]. Beijing: Metallurgical Industry Press, 1987: 10
[10] 刘荣藻. 低合金热强钢的强化机理 [M]. 北京: 冶金工业出版社, 1987: 10
[11] Distefano J R, Sikka V K, Blass J J, et al. Summary of modified 9Cr-1Mo steel development program, 1975-1985 [R]. Oak Ridge, TN: Oak Ridge National Lab., 1986, doi: 10.2172/712852
[12] Naoi H, Ogami M, Araki S, et al. Development of high-strength ferritic steel NF616 for boiler tubes [J]. Seitetsu Kenkyu, 1991, 340: 22
[13] Masuyama F. History of power plants and progress in heat resistant steels [J]. ISIJ Int., 2001, 41: 612
[14] Abe F. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants [J]. Sci. Technol. Adv. Mater., 2008, 9: 013002
[15] Liu Z. Effect of tungsten and boron on microstructure and properties of G115 new martensitic heat resistant steel [D]. Beijing: University of Science and Technology Beijing, 2019
[15] 刘 震. 钨和硼元素对G115新型马氏体耐热钢组织与性能的影响 [D]. 北京: 北京科技大学, 2019
[16] Yang L X. Multi-scale characterization of Cu and correlation study on composition-structure-properties of ultra supercritical heat resistant steel G115 [D]. Beijing: Central of Iron and Steel Research Institute, 2017
[16] 杨丽霞. 超超临界耐热钢G115中Cu的跨尺度表征及其成分-组织结构-性能相关性研究 [D]. 北京: 钢铁研究总院, 2017
[17] Liu Z D, Cheng S C, Bao H S, et al. Steel for steam-temperature ultra-supercritical thermal power unit and preparation method thereof [P]. Chin Pat, 201210574445.1, 2014
[17] 刘正东, 程世长, 包汉生等. 蒸汽温度超超临界火电机组用钢及制备方法 [P]. 中国专利, 201210574445.1, 2014)
[18] China Standardization Committee on Boilers and Pressure Vessels. Conclusion of Technology Review of Boilers and Pressure Vessels Materials [Z]. No.240, 2017-12-20
[18] 全国锅炉压力容器标准化技术委员会. 锅炉压力容器材料技术评审结论 [Z]. 编号 240, 2017-12-20
[19] Bai Y, Liu Z D, Xie J X, et al. Effect of pre-oxidation treatment on the behavior of high temperature oxidation in steam of G115 steel [J]. Acta Metall. Sin., 2018, 54: 895
[19] 白 银, 刘正东, 谢建新等. 预氧化处理对G115钢高温蒸气氧化行为的影响 [J]. 金属学报, 2018, 54: 895
[20] Tytko D, Choi P P, Kl?wer J, et al. Microstructural evolution of a Ni-based superalloy (617B) at 700 ℃ studied by electron microscopy and atom probe tomography [J]. Acta Mater., 2012, 60: 1731
[21] Liu Z D, Chen Z Z, Bao H S, et al. The Ni-Cr-Co-Mo heat resistant alloy (C-HRA-3?) and steel pipe making process [P]. Chin Pat, 201410095587.9, 2016
[21] 刘正东, 陈正宗, 包汉生等. 一种镍-铬-钴-钼耐热合金(C-HRA-3?)及其钢管制造工艺 [P]. 中国专利, 201410095587.9, 2016)
[22] Liu Z D, Chen Z Z, Bao H S, et al. Heat-resisting alloy for 700 ℃ ultra-supercritical boiler water-cooling wall and tubing manufacturing method [P]. Chin Pat, 201510813308.2, 2016
[22] 刘正东, 陈正宗, 包汉生等. 700 ℃超超临界锅炉水冷壁用耐热合金及管材制造方法 [P]. 中国专利, 201510813308.2. 2016)
[23] Henry J, Zhou G, Word T. Lessons from the past: Materials-related issues in an ultra-supercritical boiler at Eddystone plant [J]. Mater. High. Temp., 2007, 24: 249
[24] Dong C. Study on microstructure and properties of solid solution strengthened heat resistant alloy C-HRA-2 [D]. Beijing: University of Science and Technology Beijing, 2019
[24] 董 陈. 固溶强化型耐热合金C-HRA-2的组织与性能研究 [D]. 北京: 北京科技大学, 2019
[25] Dong C, Liu Z D, Wang X T, et al. Formation behavior of long needle-like M23C6 carbides in a nickel-based alloy without γ' phase during long time aging [J]. J. Alloys Compd., 2020, 821: 153259
[26] Dong C, Liu Z D, Chen Z Z, et al. Carbide dissolution and grain growth behavior of a nickel-based alloy without γ' phase during solid solution [J]. J. Alloys Compd., 2020, 825: 154106
[27] Chong Y, Liu Z D, Godfrey A, et al. Detrimental effect of cellular precipitation on the creep strength of Inconel 740H [J]. Philos. Mag. Lett., 2013, 93: 688
[28] Liu Z D, Chong Y, Bao H S, et al. Boiler tube for 700 ℃ steam parameter thermal power generating unit and preparation method thereof [P]. Chin Pat, 201310206892.6, 2013
[28] 刘正东, 崇 严, 包汉生等. 一种700 ℃蒸汽参数火电机组用锅炉管及其制备方法(C-HRA-1) [P]. 中国专利, 201310206892.6, 2013)
[1] 何焕生, 余黎明, 刘晨曦, 李会军, 高秋志, 刘永长. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58(3): 311-323.
[2] 王常帅,郭莉莉,唐丽英,周荣灿,郭建亭,周兰章. GH984G合金在700 ℃水蒸气中的氧化行为[J]. 金属学报, 2019, 55(7): 893-901.
[3] 王学,潘乾刚,陶永顺,章应霖,曾会强,刘洪. P92钢焊接接头IV型蠕变断裂特性[J]. 金属学报, 2012, 48(4): 427-434.
[4] 胡小强 肖纳敏 罗兴宏 李殿中. 含W型10%Cr超超临界钢中δ--铁素体的微观结构及其对力学性能的影响[J]. 金属学报, 2009, 45(5): 553-558.