Please wait a minute...
金属学报  2017, Vol. 53 Issue (8): 907-917    DOI: 10.11900/0412.1961.2016.00480
  本期目录 | 过刊浏览 |
陈懿, 郭明星(), 易龙, 袁波, 李高洁, 庄林忠, 张济山
北京科技大学新金属材料国家重点实验室 北京 100083
Optimization and Controlling on the Microstructure, Texture and Properties of an Advanced Al-Mg-Si-Cu-Zn Alloy Sheet
Yi CHEN, Mingxing GUO(), Long YI, Bo YUAN, Gaojie LI, Linzhong ZHUANG, Jishan ZHANG
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(2082 KB)   HTML

通过OM、SEM、TEM观察以及EBSD和力学性能测试等手段研究了不同热加工工艺对Al-Mg-Si-Cu-Zn合金板材组织、织构和成形性能,以及固溶淬火后等温时效对其析出行为的影响规律。结果表明,2种热加工工艺对T4P预时效态合金的强度和应变硬化指数n基本无影响,但是对平均塑性应变比r?、Δr以及不同方向延伸率影响显著;不同热加工过程对合金组织和织构演化均有影响,成形性能较好的固溶淬火态合金板材平均晶粒尺寸略大且呈双模型晶粒尺寸分布特征,其织构组分较多,但是强度较低。对该淬火态合金进行185 ℃人工时效20 min,其硬度即可升高65 HV,进一步时效到5 h达到峰值硬度132 HV,对应的拉伸性能可达Rp=318 MPa,Rm=364 MPa,A=13%,拉伸断口为典型的塑性断裂。该合金在185 ℃时效时仍以Mg-Si相析出为主,如β"β' 和Q'相等,峰时效后β"相主要沿b轴方向生长,最后转化为β' 和Q'相,合金表现出较好的时效稳定性。

关键词 Al-Mg-Si-Cu-Zn合金热加工织构成形性能沉淀析出    

To reduce the weight of car body, Al-Mg-Si-Cu series alloys have been widely used to produce outer body panels of automobiles due to their favorable high-strength-to-weight ratio, corrosion resistance and good formability. Moreover, the strength of Al-Mg-Si-Cu series alloys can be enhanced by artificial ageing treatments. However, their formability and final strengths still need to be further improved compared to steels, which are the major obstacles to wide-scale application of aluminum in the automotive fields. In this work, both the effect of different thermomechanical processes on formability, microstructure and texture of Al-Mg-Si-Cu-Zn alloy, and the influence of ageing treatment on its precipitation behavior were studied through mechanical property tests, OM, SEM, TEM and EBSD measurements. The results reveal that both the strengths and strain-hardening component n value of the T4P treated alloys are not affected by the two thermomechanical processes, but the r?, Δr and elongations in the different directions are significantly affected. The microstructure and texture evolution of the alloy in the two thermomechanical processes are different from each other. Both the microstructure of a little coarser and bi-modal grain size distribution, and the texture characteristics of much more components but with quite lower intensities can be seen in the solution treated alloy sheet which possesses a better formability after the T4P treatment. The hardness increment of 65 HV can be achieved in the quenched alloy after artificial ageing treatment of 185 ℃, 20 min. And then the peak-ageing state can be obtained after ageing 5 h, the hardness, yield strength, ultimate tensile strength and elongation, are as follows, 132 HV, 318 MPa, 364 MPa and 13%, respectively, and ductile fracture is the main fracture feature as observed by SEM examination of fracture surface. Mg-Si precipitates, such as β", β' and Q' phases, are still the main precipitates formed after artificial aging at 185 ℃, and β" phases mainly grow along its b axis and finally transform into β' and Q' phases, which is the main reason for the observed better ageing stability during long time artificial ageing treatment.

Key wordsAl-Mg-Si-Cu-Zn alloy    thermomechanical processing    texture    formability    precipitation
收稿日期: 2016-10-27      出版日期: 2017-04-20
:  TG146.2  

作者简介 陈 懿,男,1990年生,硕士生


陈懿, 郭明星, 易龙, 袁波, 李高洁, 庄林忠, 张济山. 新型Al-Mg-Si-Cu-Zn合金板材组织、织构和性能的优化调控[J]. 金属学报, 2017, 53(8): 907-917.
Yi CHEN, Mingxing GUO, Long YI, Bo YUAN, Gaojie LI, Linzhong ZHUANG, Jishan ZHANG. Optimization and Controlling on the Microstructure, Texture and Properties of an Advanced Al-Mg-Si-Cu-Zn Alloy Sheet. Acta Metall, 2017, 53(8): 907-917.

链接本文:      或

图1  工艺I和II处理后的T4P态Al-Mg-Si-Cu-Zn合金沿不同方向的工程应力-应变曲线
Processing Direction / (o) r r? Δr n n? A / % Rp / MPa Rm / MPa
I 0 0.638 0.585 0.020 0.306 0.308 30.48 134.4 276.5
45 0.575 0.307 28.54 133.9 273.1
90 0.551 0.311 26.64 132.7 270.0
II 0 0.726 0.654 -0.031 0.304 0.309 30.28 133.5 277.7
45 0.670 0.311 27.42 131.5 272.9
90 0.551 0.312 30.15 130.4 270.3
表1  工艺I和II处理后的Al-Mg-Si-Cu-Zn合金板材T4P态沿不同方向的力学性能
图2  工艺I和II处理后的Al-Mg-Si-Cu-Zn合金组织演化过程的OM像
图3  工艺I和II处理后的中间退火态Al-Mg-Si-Cu-Zn合金SEM像及EDS分析
图4  工艺I和II处理的冷轧态合金板材的ODF图
图5  工艺I和II处理的固溶态合金板材对应的EBSD晶粒取向和尺寸分布图
图6  工艺I和II对固溶态合金板材经固溶处理后沿轧向(φ1=0°,Φ=90°,φ2=0°)的ODF图
Component Processing I Processing II
Intensity Volume fraction Intensity Volume fraction
CubeND{001}<310> 5.62 16.80% - -
Cube{001}<100> 1.94 6.60% 4.23 5.10%
Goss{011}<100> 1.80 2.63% 1.04 1.15%
P{011}<122> 1.06 4.71% 0.75 2.94%
Q{013}<231> 1.46 13.40% 1.15 12.20%
R{124}<211> 1.14 9.22% 1.12 11.50%
H{100}<011> 1.56 3.72% 1.11 2.91%
Brass{011}<211> - - 1.03 4.03%
S{123}<634> - - 1.54 9.85%
表2  不同热加工工艺处理后固溶态合金再结晶织构组分强度及其体积分数
图7  工艺II处理的固溶态合金板材再经185 ℃时效后的硬度变化规律以及峰时效态应力-应变曲线
图8  工艺II处理的固溶态合金板材再经185 ℃时效5 h后峰时效态拉伸断口的SEM像和EDS分析
图9  经工艺II处理的固溶态合金板材再经185 ℃时效不同时间后的HRTEM像
[1] Engler O, Hirsch J. Recrystallization textures and plastic anisotropy in Al-Mg-Si sheet alloys [J]. Mater. Sci. Forum, 1996, 217-222: 479
[2] Bennett T A, Petrov R H, Kestens L A I, et al. The effect of particle-stimulated nucleation on texture banding in an aluminium alloy[J]. Scr. Mater., 2010, 63: 461
[3] Troeger L P, Starke Jr E A. Particle-stimulated nucleation of recrystallization for grain-size control and superplasticity in an Al-Mg-Si-Cu alloy[J]. Mater. Sci. Eng., 2000, 293A: 19
[4] Guo M X, Sha G, Cao L Y, et al.Enhanced bake-hardening response of an Al-Mg-Si-Cu alloy with Zn addition[J]. Mater. Chem. Phys., 2015, 162: 15
[5] Peng X Y, Guo M X, Wang X F, et al.Influence of particles with different sizes on microstructure, texture and mechanical properties of Al-Mg-Si-Cu series alloys[J]. Acta Metall. Sin., 2015, 51: 169(彭祥阳, 郭明星, 汪小锋等. 不同尺寸粒子对Al-Mg-Si-Cu系合金组织、织构和力学性能的影响[J]. 金属学报, 2015, 51: 169)
[6] Esmaeili S, Lloyd D J, Poole W J.A yield strength model for the Al-Mg-Si-Cu alloy AA6111[J]. Acta Mater., 2003, 51: 2243
[7] Hirth S M, Marshall G J, Court S A, et al. Effects of Si on the aging behaviour and formability of aluminium alloys based on AA6016 [J]. Mater. Sci. Eng., 2001, A319-321: 452
[8] Esmaeili S, Lloyd D J.Effect of composition on clustering reactions in AlMgSi(Cu) alloys[J]. Scr. Mater., 2004, 50: 155
[9] Gupta A K, Lloyd D J.Study of precipitation kinetics in a super purity Al-0.8 Pct Mg-0.9 Pct Si alloy using differential scanning calorimetry[J]. Metall. Mater. Trans., 1999, 30A: 879
[10] Cao L F, Rometsch P A, Couper M J.Effect of pre-ageing and natural ageing on the paint bake response of alloy AA6181A[J]. Mater. Sci. Eng., 2013, A571: 77
[11] Wolverton C.Solute-vacancy binding in aluminum[J]. Acta Mater., 2007, 55: 5867
[12] Saito T, Ehlers F J H, Lefebvre W, et al. HAADF-STEM and DFT investigations of the Zn-containing β″ phase in Al-Mg-Si alloys[J]. Acta Mater., 2014, 78: 245
[13] Ding X P, Cui H, Zhang J X, et al.The effect of Zn on the age hardening response in an Al-Mg-Si alloy[J]. Mater. Des., 2015, 65: 1229
[14] Yan L Z, Zhang Y A, Li X W, et al.Effect of Zn addition on microstructure and mechanical properties of an Al-Mg-Si alloy[J]. Prog. Nat. Sci. Mater. Int., 2014, 24: 97
[15] Cai Y H, Wang C, Zhang J S.Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy[J]. Int. J. Miner. Metall. Mater., 2013, 20: 659
[16] Saito T, Wenner S, Osmundsen E, et al.The effect of Zn on precipitation in Al-Mg-Si alloys[J]. Philos. Mag., 2014, 94: 2410
[17] Fukui S, Kudo H.The earing in deep-drawing and a directionality in tension-test of sheet metal[J]. Rep. Inst. Sci. Technol. Univ. Tokyo, 1950, 4: 33
[18] Lankford W T, Snyder S C, Bauscher J A.New criteria for predicting the press performance of deep drawing sheets[J]. Trans. ASM, 1950, 42: 1197
[19] Inoue H, Takasugi T.Texture control for improving deep drawability in rolled and annealed aluminum alloy sheets[J]. Mater. Trans., 2007, 48: 2014
[20] Wang X F, Guo M X, Chapuis A, et al.The dependence of final microstructure, texture evolution and mechanical properties of Al-Mg-Si-Cu alloy sheets on the intermediate annealing[J]. Mater. Sci. Eng., 2015, A633: 46
[21] Liu W C, Man C S, Morris J G.Lattice rotation of the cube orientation to the β fiber during cold rolling of AA 5052 aluminum alloy[J]. Scr. Mater., 2001, 45: 807
[22] Lücke K, Engler O.Effects of particles on development of microstructure and texture during rolling and recrystallisation in fcc alloys[J]. Mater. Sci. Technol., 1990, 6: 1113
[23] Bennett T A, Petrov R H, Kestens L A I. Effect of particles on texture banding in an aluminium alloy[J]. Scr. Mater., 2010, 62: 78
[24] Engler O, Lücke K.Mechanisms of recrystallization texture formation in aluminium alloys[J] Scr. Metall. Mater., 1992, 27: 1527
[25] Kashihara K, Inagaki H.Effect of precipitation on development of recrystallization texture in a 6061 aluminum alloy[J]. Mater. Trans., 2009, 50: 528
[26] Engler O, Yang P, Kong X W.On the formation of recrystallization textures in binary Al-1.3%Mn investigated by means of local texture analysis[J]. Acta Mater., 1996, 44: 3349
[27] Ding L P, Jia Z H, Zhang Z Q, et al.The natural aging and precipitation hardening behaviour of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions[J]. Mater. Sci. Eng., 2015, A627: 119
[28] Li Y, Guo M X, Jiang N, et al.Precipitation behaviors and preparation of an advanced Al-0.93Mg-0.78Si-0.20Cu-3.00Zn alloy for automotive application[J]. Acta Metall. Sin., 2016, 52: 191(李勇, 郭明星, 姜宁等. 汽车用新型Al-0.93Mg-0.78Si-0.20Cu-3.00Zn合金的制备及其时效析出行为研究[J]. 金属学报, 2016, 52: 191)
[29] Wolverton C.Crystal structure and stability of complex precipitate phases in Al-Cu-Mg-(Si) and Al-Zn-Mg alloys[J]. Acta Mater., 2001, 49: 3129
[1] 郭廷彪, 李琦, 王晨, 张锋, 贾智. 单晶Cu等通道转角挤压A路径形变特征及力学性能[J]. 金属学报, 2017, 53(8): 991-1000.
[2] 张海,李时磊,刘刚,王艳丽. 热加工对Z3CN20-09M双相不锈钢组织及热老化冲击断裂行为的影响[J]. 金属学报, 2017, 53(5): 531-538.
[3] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[4] 闫亚琼,罗晋如,张济山,庄林忠. 强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究[J]. 金属学报, 2017, 53(1): 107-113.
[5] 何承绪,杨富尧,严国春,孟利,马光,陈新,毛卫民. 常化处理对薄规格取向硅钢织构的影响*[J]. 金属学报, 2016, 52(9): 1063-1069.
[6] 张金虎,徐东生,王云志,杨锐. 位错对Ti-6Al-4V合金α相形核及微织构形成的影响*[J]. 金属学报, 2016, 52(8): 905-915.
[7] 李振亮,刘飞,袁爱萍,段宝玉,李晓伟,李一鸣. 轧制变形对喷射沉积含Nd镁合金织构及LPSO相的影响*[J]. 金属学报, 2016, 52(8): 938-944.
[8] 高博,王磊,梁涛沙,刘杨,宋秀,曲敬龙. 定向凝固U720Li合金的高温塑性变形行为*[J]. 金属学报, 2016, 52(4): 437-444.
[9] 李眉娟,刘晓龙,刘蕴韬,郑明毅,王琛,陈东风. 累积叠轧Mg/Al多层复合板材的织构演变及力学性能*[J]. 金属学报, 2016, 52(4): 463-472.
[10] 李勇,郭明星,姜宁,张许凯,张艳,庄林忠,张济山. 汽车用新型Al-0.93Mg-0.78Si-0.20Cu-3.00Zn合金的制备及其时效析出行为研究*[J]. 金属学报, 2016, 52(2): 191-201.
[11] 刘恭涛,杨平,毛卫民. 高温退火气氛对薄规格中温取向硅钢二次再结晶行为的影响*[J]. 金属学报, 2016, 52(1): 25-32.
[12] 方智,李静媛,陈雨来,江来珠,杜伟. 17%Cr超纯铁素体不锈钢不同方向拉伸起皱的研究*[J]. 金属学报, 2016, 52(1): 33-40.
[13] 刘志桥,杨平,毛卫民,崔凤娥. 取向硅钢中 114 418 织构对二次再结晶时晶粒异常长大的影响*[J]. 金属学报, 2015, 51(7): 769-776.
[14] 付勇军, 杨平, 蒋奇武, 王晓达, 金文旭. Fe-3%Si电工钢铸坯柱状晶织构的演变规律*[J]. 金属学报, 2015, 51(5): 545-552.
[15] 赵子博, 王清江, 刘建荣, 陈志勇, 朱绍祥, 于冰冰. Ti60合金棒材中的织构及其对拉伸性能的影响*[J]. 金属学报, 2015, 51(5): 561-568.