Please wait a minute...
金属学报  2017, Vol. 53 Issue (1): 1-9    DOI: 10.11900/0412.1961.2016.00231
  本期目录 | 过刊浏览 |
C同时提高马氏体钢强度和塑性的原理和机制
戎咏华,陈乃录()
上海交通大学材料科学与工程学院 上海 200240
The Principle and Mechanism of Enhancement of Both Strength and Ductility of Martensitic Steels by Carbon
Yonghua RONG,Nailu CHEN()
School of Materials Science and Enigineering, Shanghai Jiao Tong University, Shanghai 200240, China
全文: PDF(5916 KB)   HTML
  
摘要: 

自从淬火-配分-回火(Q-P-T)工艺被提出以来,本课题组在低C至中C含量的范围内实现了通过增加C含量的同时增强Q-P-T马氏体钢的强度和塑性。最近本课题组致力于将C含量扩大到高C范围。在多次尝试失败的基础上,提出了反相变诱发塑性(anti-TRIP)效应的设计理念,并在该理念指导下进行高碳低合金马氏体钢的成分和工艺设计,使高碳Q-P-T 马氏体的强度和塑性均高于中碳Q-P-T马氏体钢,实现了通过C同时增强钢的强度和塑性。本文主要论述anti-TRIP效应提出的背景、高碳Q-P-T马氏体钢成分和工艺的设计及其微观组织、高碳Q-P-T马氏体钢的高强-塑性机制,最后分析Q-P-T工艺使C同时提高马氏体钢的强度和塑性的原理。

关键词 淬火-配分-回火(Q-P-T)工艺C含量强度塑性反相变诱发塑性(anti-TRIP)效应    
Abstract

Since quenching-partitioning-tempering (Q-P-T) process was proposed in 2007, our research group have realized the enhancement of both strength and ductility of Q-P-T martensitic steels by increasing the carbon from low content to medium content range. The recent work devoted every effort to extending carbon content to high carbon range. Based on failure of our many trials, a design idea of anti-transformation induced plasticity (anti-TRIP) effect was proposed and the composition and process of high carbon low alloying martensitic steel were designed according to the idea of anti-TRIP effect so that the strength and ductility of high carbon Q-P-T martensitic steel are higher than those of medium carbon Q-P-T martensitic steel, which fulfills the desire of investigators for a century. This paper will mainly expound the background of anti-TRIP effect, the design of composition and process of high carbon Q-P-T martensitc steel as well as its microstructure, the mechanism of high strength and ductility for high carbon Q-P-T martensitic steel, and finally analyze the principle that Q-P-T process makes the enhancement of both strength and ductility by increase of the carbon content.

Key wordsquenching-partitioning-tempering (Q-P-T) process    carbon content    strength    ductility    anti-transformation induced plasticity (anti-TRIP) effect
收稿日期: 2016-06-14      出版日期: 2016-10-27
基金资助:资助项目 国家自然科学基金项目No.51371117

引用本文:

戎咏华,陈乃录. C同时提高马氏体钢强度和塑性的原理和机制[J]. 金属学报, 2017, 53(1): 1-9.
Yonghua RONG,Nailu CHEN. The Principle and Mechanism of Enhancement of Both Strength and Ductility of Martensitic Steels by Carbon. Acta Metall, 2017, 53(1): 1-9.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00231      或      http://www.ams.org.cn/CN/Y2017/V53/I1/1

图1  高碳淬火-配分-回火(Q-P-T)马氏体钢与其它先进高强度钢的力学性能比较[7]
图2  高碳Q-P-T马氏体钢和淬火-配分(Q&T)钢的工程应力-应变曲线
图3  Q-P-T马氏体钢强塑积和残余奥氏体体积分数随C含量的增加而提高
图4  Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb高碳低合金马氏体钢在不同工艺下微观组织的SEM像[14]
图5  形变前Q-P-T马氏体钢的TEM像[14]
图6  残余奥氏体的EBSD分析和尺寸分布图[14]
图7  在Q-P-T钢和Q&T钢中的马氏体及在Q-P-T钢中的残余奥氏体的平均位错密度随应变的变化[11]
Process Strain (εM2)1/2 ρM1 ρM2 ρ?M (εA2)1/2 ρA1 ρA2 ρ?A VRA
% 10-3 1014 m-2 1014 m-2 1014 m-2 10-3 1014 m-2 1014 m-2 1014 m-2 %
Q-P-T 0 2.09±0.06 5.94±0.36 4.96±0.30 5.45±0.33 1.57±0.06 13.06±0.88 7.96±0.54 10.51±0.71 28.1
3 1.95±0.04 5.76±0.16 4.80±0.20 5.28±0.18 2.03±0.11 18.51±1.21 0.65±0.73 14.58±0.97 24.5
5 1.85±0.03 4.77±0.12 3.97±0.10 4.37±0.11 2.57±0.11 25.44±1.26 14.16±0.76 19.30±1.01 20.4
8 2.11±0.04 6.34±0.16 5.28±0.14 5.81±0.15 3.24±0.14 38.10±1.28 22.70±0.76 30.40±1.02 15.9
14 2.26±0.05 6.86±0.24 5.72±0.20 6.29±0.22 3.78±0.20 53.38±2.62 31.26±1.56 42.37±2.09 12.8
19 2.46±0.04 8.22±0.17 6.84±0.15 7.53±0.16 10.9
24 2.66±0.04 10.04±0.17 8.36±0.15 9.20±0.16 10.9
28.9 2.92±0.04 10.82±0.20 9.86±0.16 10.84±0.18 8.0
Q&T 0 2.48±0.03 7.94±0.14 7.44±0.12 7.44±0.12 4.3
(LN) 3 2.61±0.06 9.56±0.28 8.12±0.24 8.84±0.26
5 2.87±0.06 11.40±0.33 9.66±0.27 10.53±0.30
8.7 3.25±0.03 14.20±0.15 12.00±0.13 13.10±0.14
表1  Q-P-T和Q&T样品中的马氏体和残余奥氏体在不同形变阶段的微结构参数[11]
[1] Pierman A P, Bouaziz O, Pardoen T, et al.The influence of microstructure and composition on the plastic behaviour of dual-phase steels[J]. Acta Mater., 2014, 73: 298
[1] Pierman A P, Bouaziz O, Pardoen T, et al.The influence of microstructure and composition on the plastic behaviour of dual-phase steels[J]. Acta Mater., 2014, 73: 298
[2] Chang G L, Kim S J, Lee T H, et al.Effects of volume fraction and stability of retained austenite on formability in a 0.1C-1.5Si-1.5Mn-0.5Cu TRIP-aided cold-rolled steel sheet[J]. Mater. Sci. Eng., 2004, A371: 16
[2] Chang G L, Kim S J, Lee T H, et al.Effects of volume fraction and stability of retained austenite on formability in a 0.1C-1.5Si-1.5Mn-0.5Cu TRIP-aided cold-rolled steel sheet[J]. Mater. Sci. Eng., 2004, A371: 16
[3] Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Mater., 2003, 51: 2611
[3] Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Mater., 2003, 51: 2611
[4] Speer J G, Edmonds D V, Rizzo F C, et al.Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 219
[4] Speer J G, Edmonds D V, Rizzo F C, et al.Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 219
[5] Hsu T Y (Xu Z Y). Design of structure, composition and heat treatment process for high strength steel [J]. Mater. Sci. Forum., 2007, 561-565: 2283
[5] Hsu T Y (Xu Z Y). Design of structure, composition and heat treatment process for high strength steel [J]. Mater. Sci. Forum., 2007, 561-565: 2283
[6] Ritchie R O.The conflicts between strength and toughness[J]. Nat. Mater., 2011, 10: 817
[6] Ritchie R O.The conflicts between strength and toughness[J]. Nat. Mater., 2011, 10: 817
[7] Wang X D, Zhong N, Rong Y H, et al.Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process[J]. J. Mater. Res., 2009, 24: 260
[7] Wang X D, Zhong N, Rong Y H, et al.Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process[J]. J. Mater. Res., 2009, 24: 260
[8] Rashid M S.High-strength, low-alloy steels[J]. Science, 1980, 208: 862
[8] Rashid M S.High-strength, low-alloy steels[J]. Science, 1980, 208: 862
[9] Krauss G.Deformation and fracture in martensitic carbon steels tempered at low temperatures[J]. Metall. Mater. Trans., 2001, 32A: 861
[9] Krauss G.Deformation and fracture in martensitic carbon steels tempered at low temperatures[J]. Metall. Mater. Trans., 2001, 32A: 861
[10] Zhang K, Xu W Z, Guo Z H, et al.Effects of novel Q-P-T and traditional Q-T processes on the microstructure and mechanical properties of martensitic steels with different carbon content[J]. Acta Metall. Sin., 2011, 47: 489
[10] Zhang K, Xu W Z, Guo Z H, et al.Effects of novel Q-P-T and traditional Q-T processes on the microstructure and mechanical properties of martensitic steels with different carbon content[J]. Acta Metall. Sin., 2011, 47: 489
[10] (张柯, 许为宗, 郭正洪等. 新型Q-P-T和传统Q-T工艺对不同C含量马氏体钢组织和力学性能的影响[J]. 金属学报, 2011, 47: 489)
[10] (张柯, 许为宗, 郭正洪等. 新型Q-P-T和传统Q-T工艺对不同C含量马氏体钢组织和力学性能的影响[J]. 金属学报, 2011, 47: 489)
[11] Qin S W, Liu Y, Hao Q G, et al.Ultrahigh ductility, high-carbon martensitic steel[J]. Metall. Mater. Trans., 2016, 47A: 4853
[11] Qin S W, Liu Y, Hao Q G, et al.Ultrahigh ductility, high-carbon martensitic steel[J]. Metall. Mater. Trans., 2016, 47A: 4853
[12] Qin S W, Liu Y, Hao Q G, et al.The mechanism of high ductility for novel high-carbon quenching-partitioning-tempering martensitic steel[J]. Metall. Mater. Trans., 2015, 46A: 4047
[12] Qin S W, Liu Y, Hao Q G, et al.The mechanism of high ductility for novel high-carbon quenching-partitioning-tempering martensitic steel[J]. Metall. Mater. Trans., 2015, 46A: 4047
[13] Hao Q G, Qin S W, Liu Y, et al.Effect of retained austenite on the dynamic tensile behavior of a novel quenching-partitioning-tempering martensitic steel[J]. Mater. Sci. Eng., 2016, A662: 16
[13] Hao Q G, Qin S W, Liu Y, et al.Effect of retained austenite on the dynamic tensile behavior of a novel quenching-partitioning-tempering martensitic steel[J]. Mater. Sci. Eng., 2016, A662: 16
[14] Qin S W, Liu Y, Hao Q G, et al.High carbon microalloyed martensitic steel with ultrahigh strength-ductility[J]. Mater. Sci. Eng., 2016, A663: 151
[14] Qin S W, Liu Y, Hao Q G, et al.High carbon microalloyed martensitic steel with ultrahigh strength-ductility[J]. Mater. Sci. Eng., 2016, A663: 151
[15] Chatterjee S, Bhadeshia H K D H. TRIP-assisted steels: Cracking of high-carbon martensite[J]. Mater. Sci. Technol., 2006, 22: 645
[15] Chatterjee S, Bhadeshia H K D H. TRIP-assisted steels: Cracking of high-carbon martensite[J]. Mater. Sci. Technol., 2006, 22: 645
[16] Zhang K, Liu P, Li W, et al.High strength-ductility Nb-microalloyed low martensitic carbon steel: Novel process and mechanism[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 1264
[16] Zhang K, Liu P, Li W, et al.High strength-ductility Nb-microalloyed low martensitic carbon steel: Novel process and mechanism[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 1264
[17] Rong Y H.Advanced Q-P-T steels with ultrahigh strength-high ductility[J]. Acta Metall. Sin., 2011, 47: 1483
[17] Rong Y H.Advanced Q-P-T steels with ultrahigh strength-high ductility[J]. Acta Metall. Sin., 2011, 47: 1483
[17] (戎咏华. 先进超高强度-高塑性Q-P-T钢[J]. 金属学报, 2011, 47: 1483)
[17] (戎咏华. 先进超高强度-高塑性Q-P-T钢[J]. 金属学报, 2011, 47: 1483)
[18] Sugimoto K I, Iida T, Sakaguchi J, et al.Retained austenite characteristics and tensile properties in a TRIP type bainitic sheet steel[J]. ISIJ Int., 2000, 40: 902
[18] Sugimoto K I, Iida T, Sakaguchi J, et al.Retained austenite characteristics and tensile properties in a TRIP type bainitic sheet steel[J]. ISIJ Int., 2000, 40: 902
[19] Chinh N Q, Horváth G, Horita Z, et al.A new constitutive relationship for the homogeneous deformation of metals over a wide range of strain[J]. Acta Metall., 2004, 52: 3555
[19] Chinh N Q, Horváth G, Horita Z, et al.A new constitutive relationship for the homogeneous deformation of metals over a wide range of strain[J]. Acta Metall., 2004, 52: 3555
[20] Zackay V F, Parker E R, Fahr D, et al.The enhancement of ductility in high-strength steels[J]. ASM. Trans. Quart., 1967, 60: 252
[20] Zackay V F, Parker E R, Fahr D, et al.The enhancement of ductility in high-strength steels[J]. ASM. Trans. Quart., 1967, 60: 252
[21] Webster D.Increasing toughness of martensitic stainless steel AFC 77 by control of retained austenite content ausforming and strain aging. ASM Trans. Quart., 1968, 61: 816
[21] Webster D.Increasing toughness of martensitic stainless steel AFC 77 by control of retained austenite content ausforming and strain aging. ASM Trans. Quart., 1968, 61: 816
[22] Zhang K, Zhang M H, Guo Z H, et al.A new effect of retained austenite on ductility enhancement in high-strength quenching-partitioning-tempering martensitic steel[J]. Mater. Sci. Eng., 2011, A528: 8486
[22] Zhang K, Zhang M H, Guo Z H, et al.A new effect of retained austenite on ductility enhancement in high-strength quenching-partitioning-tempering martensitic steel[J]. Mater. Sci. Eng., 2011, A528: 8486
[23] Wang Y, Zhang K, Guo Z H, et al.A new effect of retained austenite on ductility enhancement of low carbon Q-P-T steel[J]. Acta Metall. Sin., 2012, 48: 641
[23] Wang Y, Zhang K, Guo Z H, et al.A new effect of retained austenite on ductility enhancement of low carbon Q-P-T steel[J]. Acta Metall. Sin., 2012, 48: 641
[23] (王颖, 张柯, 郭正洪等. 残余奥氏体增强低碳Q-P-T钢塑性的新效应[J]. 金属学报, 2012, 48: 641)
[23] (王颖, 张柯, 郭正洪等. 残余奥氏体增强低碳Q-P-T钢塑性的新效应[J]. 金属学报, 2012, 48: 641)
[24] Wang Y, Zhang K, Guo Z H, et al.A new effect of retained austenite on ductility enhancement in high strength bainitic steel[J]. Mater. Sci. Eng., 2012, A552: 288
[24] Wang Y, Zhang K, Guo Z H, et al.A new effect of retained austenite on ductility enhancement in high strength bainitic steel[J]. Mater. Sci. Eng., 2012, A552: 288
[25] Koistinen D P, Marburger R E.A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metall., 1959, 7: 59
[25] Koistinen D P, Marburger R E.A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metall., 1959, 7: 59
[1] 于宣, 张志豪, 谢建新. 不同Ce含量Fe-6.5%Si合金的组织、有序结构和中温拉伸塑性[J]. 金属学报, 2017, 53(8): 927-936.
[2] 舒志强,袁鹏斌,欧阳志英,龚丹梅,白雪明. 回火温度对26CrMo钻杆钢显微组织和力学性能的影响[J]. 金属学报, 2017, 53(6): 669-676.
[3] 牛志伟,叶政,刘凯凯,黄继华,陈树海,赵兴科. Al-Si-Ge钎料钎焊Cu/Al接头组织与性能研究[J]. 金属学报, 2017, 53(6): 719-725.
[4] 王凯,刘浏,徐庭栋,董学东. 2.25Cr1Mo合金高温低塑性的非平衡偏聚机理研究[J]. 金属学报, 2017, 53(3): 345-350.
[5] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[6] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[7] 刘积厚,赵洪运,李卓霖,宋晓国,董红杰,赵一璇,冯吉才. Cu/Sn/Cu超声-TLP接头的显微组织与力学性能[J]. 金属学报, 2017, 53(2): 227-232.
[8] 刘奋军, 傅莉, 陈海燕. 铝合金薄板高转速搅拌摩擦焊接头组织与力学性能[J]. 金属学报, 2017, 53(12): 1651-1658.
[9] 张金睿, 张晏玮, 郝玉琳, 李述军, 杨锐. 生物医用Ti-24Nb-4Zr-8Sn单晶合金塑性变形行为研究[J]. 金属学报, 2017, 53(10): 1385-1392.
[10] 谢锐,吕铮,卢晨阳,李正元,丁学勇,刘春明. 9Cr-ODS钢中纳米析出相的SAXS和TEM研究*[J]. 金属学报, 2016, 52(9): 1053-1062.
[11] 高玉魁. 不同表面改性强化处理对TC4钛合金表面完整性及疲劳性能的影响*[J]. 金属学报, 2016, 52(8): 915-923.
[12] 陈瑞,许庆彦,柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究*[J]. 金属学报, 2016, 52(8): 987-999.
[13] 李劲风,刘丹阳,郑子樵,陈永来,张绪虎. Er微合金化对2055 Al-Li合金微观组织及力学性能的影响*[J]. 金属学报, 2016, 52(7): 821-830.
[14] 张可,雍岐龙,孙新军,李昭东,赵培林. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响*[J]. 金属学报, 2016, 52(5): 529-537.
[15] 高博,王磊,梁涛沙,刘杨,宋秀,曲敬龙. 定向凝固U720Li合金的高温塑性变形行为*[J]. 金属学报, 2016, 52(4): 437-444.