Please wait a minute...
金属学报  2017, Vol. 53 Issue (1): 1-9    DOI: 10.11900/0412.1961.2016.00231
  本期目录 | 过刊浏览 |
C同时提高马氏体钢强度和塑性的原理和机制
戎咏华,陈乃录()
上海交通大学材料科学与工程学院 上海 200240
The Principle and Mechanism of Enhancement of Both Strength and Ductility of Martensitic Steels by Carbon
Yonghua RONG,Nailu CHEN()
School of Materials Science and Enigineering, Shanghai Jiao Tong University, Shanghai 200240, China
全文: PDF(5916 KB)   HTML
  
摘要: 

自从淬火-配分-回火(Q-P-T)工艺被提出以来,本课题组在低C至中C含量的范围内实现了通过增加C含量的同时增强Q-P-T马氏体钢的强度和塑性。最近本课题组致力于将C含量扩大到高C范围。在多次尝试失败的基础上,提出了反相变诱发塑性(anti-TRIP)效应的设计理念,并在该理念指导下进行高碳低合金马氏体钢的成分和工艺设计,使高碳Q-P-T 马氏体的强度和塑性均高于中碳Q-P-T马氏体钢,实现了通过C同时增强钢的强度和塑性。本文主要论述anti-TRIP效应提出的背景、高碳Q-P-T马氏体钢成分和工艺的设计及其微观组织、高碳Q-P-T马氏体钢的高强-塑性机制,最后分析Q-P-T工艺使C同时提高马氏体钢的强度和塑性的原理。

关键词 淬火-配分-回火(Q-P-T)工艺C含量强度塑性反相变诱发塑性(anti-TRIP)效应    
Abstract

Since quenching-partitioning-tempering (Q-P-T) process was proposed in 2007, our research group have realized the enhancement of both strength and ductility of Q-P-T martensitic steels by increasing the carbon from low content to medium content range. The recent work devoted every effort to extending carbon content to high carbon range. Based on failure of our many trials, a design idea of anti-transformation induced plasticity (anti-TRIP) effect was proposed and the composition and process of high carbon low alloying martensitic steel were designed according to the idea of anti-TRIP effect so that the strength and ductility of high carbon Q-P-T martensitic steel are higher than those of medium carbon Q-P-T martensitic steel, which fulfills the desire of investigators for a century. This paper will mainly expound the background of anti-TRIP effect, the design of composition and process of high carbon Q-P-T martensitc steel as well as its microstructure, the mechanism of high strength and ductility for high carbon Q-P-T martensitic steel, and finally analyze the principle that Q-P-T process makes the enhancement of both strength and ductility by increase of the carbon content.

Key wordsquenching-partitioning-tempering (Q-P-T) process    carbon content    strength    ductility    anti-transformation induced plasticity (anti-TRIP) effect
收稿日期: 2016-06-14      出版日期: 2016-10-27
基金资助:资助项目 国家自然科学基金项目No.51371117

引用本文:

戎咏华,陈乃录. C同时提高马氏体钢强度和塑性的原理和机制[J]. 金属学报, 2017, 53(1): 1-9.
Yonghua RONG,Nailu CHEN. The Principle and Mechanism of Enhancement of Both Strength and Ductility of Martensitic Steels by Carbon. Acta Metall Sin, 2017, 53(1): 1-9.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00231      或      http://www.ams.org.cn/CN/Y2017/V53/I1/1

图1  高碳淬火-配分-回火(Q-P-T)马氏体钢与其它先进高强度钢的力学性能比较[7]
图2  高碳Q-P-T马氏体钢和淬火-配分(Q&T)钢的工程应力-应变曲线
图3  Q-P-T马氏体钢强塑积和残余奥氏体体积分数随C含量的增加而提高
图4  Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb高碳低合金马氏体钢在不同工艺下微观组织的SEM像[14]
图5  形变前Q-P-T马氏体钢的TEM像[14]
图6  残余奥氏体的EBSD分析和尺寸分布图[14]
图7  在Q-P-T钢和Q&T钢中的马氏体及在Q-P-T钢中的残余奥氏体的平均位错密度随应变的变化[11]
Process Strain (εM2)1/2 ρM1 ρM2 ρ?M (εA2)1/2 ρA1 ρA2 ρ?A VRA
% 10-3 1014 m-2 1014 m-2 1014 m-2 10-3 1014 m-2 1014 m-2 1014 m-2 %
Q-P-T 0 2.09±0.06 5.94±0.36 4.96±0.30 5.45±0.33 1.57±0.06 13.06±0.88 7.96±0.54 10.51±0.71 28.1
3 1.95±0.04 5.76±0.16 4.80±0.20 5.28±0.18 2.03±0.11 18.51±1.21 0.65±0.73 14.58±0.97 24.5
5 1.85±0.03 4.77±0.12 3.97±0.10 4.37±0.11 2.57±0.11 25.44±1.26 14.16±0.76 19.30±1.01 20.4
8 2.11±0.04 6.34±0.16 5.28±0.14 5.81±0.15 3.24±0.14 38.10±1.28 22.70±0.76 30.40±1.02 15.9
14 2.26±0.05 6.86±0.24 5.72±0.20 6.29±0.22 3.78±0.20 53.38±2.62 31.26±1.56 42.37±2.09 12.8
19 2.46±0.04 8.22±0.17 6.84±0.15 7.53±0.16 10.9
24 2.66±0.04 10.04±0.17 8.36±0.15 9.20±0.16 10.9
28.9 2.92±0.04 10.82±0.20 9.86±0.16 10.84±0.18 8.0
Q&T 0 2.48±0.03 7.94±0.14 7.44±0.12 7.44±0.12 4.3
(LN) 3 2.61±0.06 9.56±0.28 8.12±0.24 8.84±0.26
5 2.87±0.06 11.40±0.33 9.66±0.27 10.53±0.30
8.7 3.25±0.03 14.20±0.15 12.00±0.13 13.10±0.14
表1  Q-P-T和Q&T样品中的马氏体和残余奥氏体在不同形变阶段的微结构参数[11]
[1] Pierman A P, Bouaziz O, Pardoen T, et al.The influence of microstructure and composition on the plastic behaviour of dual-phase steels[J]. Acta Mater., 2014, 73: 298
[2] Chang G L, Kim S J, Lee T H, et al.Effects of volume fraction and stability of retained austenite on formability in a 0.1C-1.5Si-1.5Mn-0.5Cu TRIP-aided cold-rolled steel sheet[J]. Mater. Sci. Eng., 2004, A371: 16
[3] Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Mater., 2003, 51: 2611
[4] Speer J G, Edmonds D V, Rizzo F C, et al.Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 219
[5] Hsu T Y (Xu Z Y). Design of structure, composition and heat treatment process for high strength steel [J]. Mater. Sci. Forum., 2007, 561-565: 2283
[6] Ritchie R O.The conflicts between strength and toughness[J]. Nat. Mater., 2011, 10: 817
[7] Wang X D, Zhong N, Rong Y H, et al.Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process[J]. J. Mater. Res., 2009, 24: 260
[8] Rashid M S.High-strength, low-alloy steels[J]. Science, 1980, 208: 862
[9] Krauss G.Deformation and fracture in martensitic carbon steels tempered at low temperatures[J]. Metall. Mater. Trans., 2001, 32A: 861
[10] Zhang K, Xu W Z, Guo Z H, et al.Effects of novel Q-P-T and traditional Q-T processes on the microstructure and mechanical properties of martensitic steels with different carbon content[J]. Acta Metall. Sin., 2011, 47: 489
[10] (张柯, 许为宗, 郭正洪等. 新型Q-P-T和传统Q-T工艺对不同C含量马氏体钢组织和力学性能的影响[J]. 金属学报, 2011, 47: 489)
[11] Qin S W, Liu Y, Hao Q G, et al.Ultrahigh ductility, high-carbon martensitic steel[J]. Metall. Mater. Trans., 2016, 47A: 4853
[12] Qin S W, Liu Y, Hao Q G, et al.The mechanism of high ductility for novel high-carbon quenching-partitioning-tempering martensitic steel[J]. Metall. Mater. Trans., 2015, 46A: 4047
[13] Hao Q G, Qin S W, Liu Y, et al.Effect of retained austenite on the dynamic tensile behavior of a novel quenching-partitioning-tempering martensitic steel[J]. Mater. Sci. Eng., 2016, A662: 16
[14] Qin S W, Liu Y, Hao Q G, et al.High carbon microalloyed martensitic steel with ultrahigh strength-ductility[J]. Mater. Sci. Eng., 2016, A663: 151
[15] Chatterjee S, Bhadeshia H K D H. TRIP-assisted steels: Cracking of high-carbon martensite[J]. Mater. Sci. Technol., 2006, 22: 645
[16] Zhang K, Liu P, Li W, et al.High strength-ductility Nb-microalloyed low martensitic carbon steel: Novel process and mechanism[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 1264
[17] Rong Y H.Advanced Q-P-T steels with ultrahigh strength-high ductility[J]. Acta Metall. Sin., 2011, 47: 1483
[17] (戎咏华. 先进超高强度-高塑性Q-P-T钢[J]. 金属学报, 2011, 47: 1483)
[18] Sugimoto K I, Iida T, Sakaguchi J, et al.Retained austenite characteristics and tensile properties in a TRIP type bainitic sheet steel[J]. ISIJ Int., 2000, 40: 902
[19] Chinh N Q, Horváth G, Horita Z, et al.A new constitutive relationship for the homogeneous deformation of metals over a wide range of strain[J]. Acta Metall., 2004, 52: 3555
[20] Zackay V F, Parker E R, Fahr D, et al.The enhancement of ductility in high-strength steels[J]. ASM. Trans. Quart., 1967, 60: 252
[21] Webster D.Increasing toughness of martensitic stainless steel AFC 77 by control of retained austenite content ausforming and strain aging. ASM Trans. Quart., 1968, 61: 816
[22] Zhang K, Zhang M H, Guo Z H, et al.A new effect of retained austenite on ductility enhancement in high-strength quenching-partitioning-tempering martensitic steel[J]. Mater. Sci. Eng., 2011, A528: 8486
[23] Wang Y, Zhang K, Guo Z H, et al.A new effect of retained austenite on ductility enhancement of low carbon Q-P-T steel[J]. Acta Metall. Sin., 2012, 48: 641
[23] (王颖, 张柯, 郭正洪等. 残余奥氏体增强低碳Q-P-T钢塑性的新效应[J]. 金属学报, 2012, 48: 641)
[24] Wang Y, Zhang K, Guo Z H, et al.A new effect of retained austenite on ductility enhancement in high strength bainitic steel[J]. Mater. Sci. Eng., 2012, A552: 288
[25] Koistinen D P, Marburger R E.A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metall., 1959, 7: 59
[1] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[2] 张正延,柴锋,罗小兵,陈刚,杨才福,苏航. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为[J]. 金属学报, 2019, 55(6): 783-791.
[3] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[4] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[5] 冯汉臣,闵学刚,魏大圣,周立初,崔世云,方峰. 低温回火对超大形变冷拔珠光体钢丝显微组织和力学性能的影响[J]. 金属学报, 2019, 55(5): 585-592.
[6] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[7] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[8] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[9] 何明, 李显亮, 王情伟, 王连钰, 王强. 磁屏蔽对电磁出钢系统中感应加热电源功率损耗的影响[J]. 金属学报, 2019, 55(2): 249-257.
[10] 陶然, 赵玉涛, 陈刚, 怯喜周. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 160-170.
[11] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[12] 郭祥如, 孙朝阳, 王春晖, 钱凌云, 刘凤仙. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究[J]. 金属学报, 2018, 54(9): 1322-1332.
[13] 丁浩, 崔喜平, 许长寿, 李爱滨, 耿林, 范国华, 陈俊锋, 孟松鹤. 连续玄武岩纤维增强铝基层状复合材料的制备与力学特性[J]. 金属学报, 2018, 54(8): 1171-1178.
[14] 胡宽辉, 毛新平, 周桂峰, 刘静, 王志奋. Si和Mn含量对超高强度热成形钢组织和性能的影响[J]. 金属学报, 2018, 54(8): 1105-1112.
[15] 阳锋, 罗海文, 董瀚. 退火温度对冷轧7Mn钢拉伸行为的影响及模拟研究[J]. 金属学报, 2018, 54(6): 859-867.