Please wait a minute...
金属学报  2017, Vol. 53 Issue (1): 114-122    DOI: 10.11900/0412.1961.2016.00178
  本期目录 | 过刊浏览 |
基于二次多项式新本构模型的铝合金搅拌摩擦焊板材成形极限研究
初冠南1,林艳丽1(),宋伟宁2,张林1
1 哈尔滨工业大学(威海) 威海 2642092 威海北洋电气集团股份有限公司 威海 264209
Forming Limit of FSW Aluminum Alloy Blank Based on a New Constitutive Model
Guannan CHU1,Yanli LIN1(),Weining SONG2,Lin ZHANG1
1 School of Materials Science & Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China;
2 Weihai Northern Electric Group Company Limited, Weihai 264209, China
全文: PDF(3175 KB)   HTML
摘要: 

针对铝合金焊缝性能低于母材、现有成形极限分析方法不适宜分析铝合金搅拌摩擦焊板材成形极限的现状,提出了一种基于二次多项式新本构模型的铝合金拼焊板成形极限理论模型。核心思想为利用材料自身的性能差异替代经典M-K理论模型的沟槽假设。针对铝合金硬化指数低、幂指数回归精度差的问题,将二次多项式新本构模型应用于M-K理论模型,最终建立了适合于铝合金搅拌摩擦焊拼焊板的成形极限理论预测模型。对铝合金搅拌摩擦焊板材进行了成形极限实验,并通过XJTUDIC三维数字散斑应变变形测量系统实时测量变形过程中的应变值,得到了铝合金搅拌摩擦焊拼焊板的实验成形极限图。最后对实验结果和理论分析结果进行了对比。相比传统的幂指数本构模型,二次多项式对应力-应变曲线的回归,无论在初试屈服阶段或后期变形阶段均有很好的吻合精度。幂指数最大拟合误差超过12%,而二次多项式的拟合误差小于1%,二次多项式回归模型能很好地拟合铝合金搅拌摩擦焊接接头的应力-应变关系;采用二次多项式本构关系的理论模型能很好地预测铝合金搅拌摩擦焊板材的成形极限,第一主应变的预测误差小于0.01;而幂指数理论模型则导致平面应变状态下的极限应变预测结果明显不准,在相同应变路径下第一主应变的预测误差达0.14。

关键词 铝合金搅拌摩擦焊成形极限应力-应变曲线M-K模型    
Abstract

Automobile lightweight can effectively save fuel consumption and reduce CO2 emissions. Aluminum and its alloys are desirable for the automotive industry due to their excellent high-strength to weight ratio. However, due to the introduction of the welding seam, it has brought new changes to the forming process, especially to the forming limit. To establish a reasonable forming limit curve (FLC) analysis method of friction stir welding (FSW) aluminum alloy blank, a new theoretical model was proposed based on the new second order function constitutive model. The main idea is using the differences in mechanical property between the welding and heat affected zone substitution for the hypothesis of geometry groove in the classic M-K theoretical model. The new second order function constitutive model was applied to M-K theoretical model. Eventually, a new FLC theoretical model for FSW aluminum alloy blank was established. Such theoretical model also overcomes the low strain hardening exponent of aluminum alloy material, which leads to a poor regression accuracy by power-exponent function model. The forming limit test for FSW aluminum alloy blank was performed, and the real-time strain was measured by three-dimensional digital speckle strain measurement system (XJTUDIC). Finally, the results of experiments and the theoretical analysis are compared. Compared with the traditional power law, the regression result of the new second order function constitutive model on the stress-strain curve no matter in the initial yield stage or in late deformation stage has a good fitting precision. The maximum fitting error of the power law on the stress-strain curve is more than 12%, but the fitting error of the new second order function constitutive model is less than 1%. The theoretical prediction based on the new second order function constitutive model is significantly better than the theoretical predictions based on power law in predicting the forming limit of FSW aluminum alloy blank. The prediction error of the first principal strain based on the new second order function constitutive model is less than 0.01. While the maximum prediction error of the first principal strain based on the power law is 0.14.

Key wordsaluminum alloy    friction stir welding    forming limit    stress-strain curve    M-K model
收稿日期: 2016-05-10      出版日期: 2016-11-09
基金资助:资助项目 国家自然科学基金项目Nos.51405102和51475121,中国博士后科学基金项目No.2015M570286,中央高校基本科研业务费专项资金项目No.HIT.NSRIF.2016093及哈尔滨工业大学(威海)校科学研究基金项目No.HIT(WH)201414

引用本文:

初冠南,林艳丽,宋伟宁,张林. 基于二次多项式新本构模型的铝合金搅拌摩擦焊板材成形极限研究[J]. 金属学报, 2017, 53(1): 114-122.
Guannan CHU,Yanli LIN,Weining SONG,Lin ZHANG. Forming Limit of FSW Aluminum Alloy Blank Based on a New Constitutive Model. Acta Metall, 2017, 53(1): 114-122.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00178      或      http://www.ams.org.cn/CN/Y2017/V53/I1/114

图1  M-K理论模型
图2  改进后M-K模型的具体迭代计算算法
图3  焊接后板材照片
图4  试样拉伸示意图
图5  实验后试样及应变分布
图6  300 ℃退火后接头焊核与母材的的组织形貌
Zone Point Stress / MPa Strain
Welding Initial yield point 111.7 0.0018
Maximum stress point 194.7 0.2128
Middle point A 166.4 0.0529
Heat Initial yield point 111.7 0.0018
affected Maximum stress point 180.9 0.1193
Middle point A 165.4 0.0397
表1  二次多项式拟合时采用的实验数据点
Zone X1 X2 X3
Welding 1.45×10-4 0.57 22.43
Heat affected 2.09×10-4 0.57 72.47
表2  二次多项式拟合所得系数
图7  流动应力-应变回归曲线
图8  理论预测结果与实验结果对比
图9  理论预测结果误差分析
[2] (陈一龙. 汽车轻量化技术发展状况及展望[J]. 汽车工艺与材料, 2012, (1): 1)
[1] Liu J A.Make great efforts to develop aluminum parts industry and promote the modernization progress of automobile industry[J]. Alum. Fabr., 2005, (3): 8
[3] Zhu J F.Aluminum alloy used for automobile outer panel at abroad[J]. Metall. Inf. Rev., 2005, (1): 25
[1] (刘静安. 大力发展铝合金零部件产业促进汽车工业的现代化进程[J]. 铝加工, 2005, (3): 8)
[3] (朱久发. 国外汽车面板用铝合金材料[J]. 冶金信息导刊, 2005, (1): 25)
[2] Chen Y L.The development status and prospects of automobile lightweight technology[J]. Auto Technol. Mater., 2012, (1): 1
[4] Kumar M, Sotirov N, Chimani C M.Investigations on warm forming of AW-7020-T6 alloy sheet[J]. J. Mater. Process. Tech., 2014, 214: 1769
[2] (陈一龙. 汽车轻量化技术发展状况及展望[J]. 汽车工艺与材料, 2012, (1): 1)
[5] Zhong Q, Shi Y, Liu B.The application of aluminum alloy in automotive light weighting[J]. Adv. Mater. Ind., 2015, (2): 23
[3] Zhu J F.Aluminum alloy used for automobile outer panel at abroad[J]. Metall. Inf. Rev., 2005, (1): 25
[5] (钟奇, 施毅, 刘博. 铝合金在汽车轻量化中的应用[J]. 新材料产业, 2015, (2): 23)
[3] (朱久发. 国外汽车面板用铝合金材料[J]. 冶金信息导刊, 2005, (1): 25)
[6] Ma M T, Li Z G, Yi H L, et al.Polarization of light-weighted cars and application of aluminum alloys[J]. World Nonferrous. Met, 2006, (10): 10
[4] Kumar M, Sotirov N, Chimani C M.Investigations on warm forming of AW-7020-T6 alloy sheet[J]. J. Mater. Process. Tech., 2014, 214: 1769
[6] (马鸣图, 李志刚, 易红亮等. 汽车轻量化及铝合金的应用[J]. 世界有色金属, 2006, (10): 10)
[5] Zhong Q, Shi Y, Liu B.The application of aluminum alloy in automotive light weighting[J]. Adv. Mater. Ind., 2015, (2): 23
[5] (钟奇, 施毅, 刘博. 铝合金在汽车轻量化中的应用[J]. 新材料产业, 2015, (2): 23)
[7] Zheng H, Zhao X Y.Lightweight automobile and application of aluminum alloys in modern automobile production[J]. Forg. Stamp. Technol., 2016, 41: 1
[6] Ma M T, Li Z G, Yi H L, et al.Polarization of light-weighted cars and application of aluminum alloys[J]. World Nonferrous. Met, 2006, (10): 10
[7] (郑晖, 赵曦雅. 汽车轻量化及铝合金在现代汽车生产中的应用[J]. 锻压技术, 2016, 41: 1)
[6] (马鸣图, 李志刚, 易红亮等. 汽车轻量化及铝合金的应用[J]. 世界有色金属, 2006, (10): 10)
[8] Banabic D.Sheet Metal Forming Processes[M]. Berlin: Springer, 2010: 156
[7] Zheng H, Zhao X Y.Lightweight automobile and application of aluminum alloys in modern automobile production[J]. Forg. Stamp. Technol., 2016, 41: 1
[9] Keeler S P, BackofenW A. Plastic instability and fracture in sheets stretched over rigid punches[J]. Trans. ASM, 1963, 56: 25
[7] (郑晖, 赵曦雅. 汽车轻量化及铝合金在现代汽车生产中的应用[J]. 锻压技术, 2016, 41: 1)
[10] Olsen TY.Machines for ductility testing[J]. ASTM, 1920, 20: 398
[8] Banabic D.Sheet Metal Forming Processes[M]. Berlin: Springer, 2010: 156
[11] Banabic D.Forming Limits of Sheet Metal[M]. Berlin: Springer, 2000: 173
[9] Keeler S P, BackofenW A. Plastic instability and fracture in sheets stretched over rigid punches[J]. Trans. ASM, 1963, 56: 25
[12] Swift H W.Plastic instability under plane stress[J]. J. Mech. Phys. Solids, 1952, 1: 1
[10] Olsen TY.Machines for ductility testing[J]. ASTM, 1920, 20: 398
[13] Hill R.On discontinuous plastic states, with special reference to localized necking in thin sheets[J]. J. Mech. Phys. Solids, 1952, 1: 19
[14] Hora P, Longchang T, Reissner J, et al.Prediction methods for ductile sheet metal failure using FE-simulation [A]. Proceedings of the IDDRG Congress[C]. Porto: IDDRG, 1994: 363
[11] Banabic D.Forming Limits of Sheet Metal[M]. Berlin: Springer, 2000: 173
[12] Swift H W.Plastic instability under plane stress[J]. J. Mech. Phys. Solids, 1952, 1: 1
[13] Hill R.On discontinuous plastic states, with special reference to localized necking in thin sheets[J]. J. Mech. Phys. Solids, 1952, 1: 19
[15] Marciniak Z, Kuczyński K.Limit strains in the processes of stretch-forming sheet metal[J]. Int. J. Mech. Sci.,1967, 9: 609
[14] Hora P, Longchang T, Reissner J, et al.Prediction methods for ductile sheet metal failure using FE-simulation [A]. Proceedings of the IDDRG Congress[C]. Porto: IDDRG, 1994: 363
[16] Marciniak Z, Kuczyński K, Pokora T.Influence of the plastic properties of a material on the forming limit diagram for sheet metal in tension[J]. Int. J. Mech. Sci.,1973, 15: 789
[17] Hutchinson J W, Neale K W, Needleman A.Sheet necking—I. Validity of plane stress assumptions of the long-wavelength approximation (A). In: Koistinen D P, Wang N M eds., Mechanics of Sheet Metal Forming [M]. New York/London: Plenum Press, 1978: 111
[18] St?ren S, Rice J R.Localized necking in thin sheets[J]. J. Mech. Phys. Solids, 1975, 23: 421
[19] Dudzinski D, Molinari A.Perturbation analysis of thermoviscoplastic instabilities in biaxial loading[J]. Int. J. Solids Struct., 1991, 27: 601
[15] Marciniak Z, Kuczyński K.Limit strains in the processes of stretch-forming sheet metal[J]. Int. J. Mech. Sci.,1967, 9: 609
[20] Yu Z Q, Kong Q S, Ma C H, et al.Theoretical and experimental study on formability of laser seamed tube hydroforming[J]. Int. J. Adv. Manuf. Technol., 2014, 75: 305.
[16] Marciniak Z, Kuczyński K, Pokora T.Influence of the plastic properties of a material on the forming limit diagram for sheet metal in tension[J]. Int. J. Mech. Sci.,1973, 15: 789
[21] Chen X F, Yu Z Q, Hou B, et al.A theoretical and experimental study on forming limit diagram for a seamed tube hydroforming[J]. J. Mater. Process. Technol., 2011, 211: 2012
[17] Hutchinson J W, Neale K W, Needleman A.Sheet necking—I. Validity of plane stress assumptions of the long-wavelength approximation (A). In: Koistinen D P, Wang N M eds., Mechanics of Sheet Metal Forming [M]. New York/London: Plenum Press, 1978: 111
[18] St?ren S, Rice J R.Localized necking in thin sheets[J]. J. Mech. Phys. Solids, 1975, 23: 421
[22] He Z B, Yuan S J, Lin Y L, et al.Analytical model for tube hydro-bulging test, part I: models for stress components and bulging zone profile[J]. Int. J. Mech. Sci., 2014, 87: 297
[19] Dudzinski D, Molinari A.Perturbation analysis of thermoviscoplastic instabilities in biaxial loading[J]. Int. J. Solids Struct., 1991, 27: 601
[23] He Z B, Yuan S J, Lin Y L, et al.Analytical model for tube hydro-bulging tests, part II: linear model for pole thickness and its application[J]. Int. J. Mech. Sci., 2014, 87: 307
[20] Yu Z Q, Kong Q S, Ma C H, et al.Theoretical and experimental study on formability of laser seamed tube hydroforming[J]. Int. J. Adv. Manuf. Technol., 2014, 75: 305.
[24] Chu G N, Liu W J.Experimental observations of 5A02 aluminum alloy in electromagnetically assisted tube hydroforming[J]. JOM, 2013, 65: 599
[21] Chen X F, Yu Z Q, Hou B, et al.A theoretical and experimental study on forming limit diagram for a seamed tube hydroforming[J]. J. Mater. Process. Technol., 2011, 211: 2012
[25] Chu G N, Yang S, Wang J X.Mechanics condition of thin-walled tubular component with rib hydroforming[J]. Trans. Nonferrous Met. Soc. China, 2012, 22(suppl.2): s280
[22] He Z B, Yuan S J, Lin Y L, et al.Analytical model for tube hydro-bulging test, part I: models for stress components and bulging zone profile[J]. Int. J. Mech. Sci., 2014, 87: 297
[26] Hu W L, Lin Y L, Yuan S J, et al. Constitutive models for regression of various experimental stress-strain relations [J]. Int. J. Mech. Sci., 2015, 101-102: 1
[23] He Z B, Yuan S J, Lin Y L, et al.Analytical model for tube hydro-bulging tests, part II: linear model for pole thickness and its application[J]. Int. J. Mech. Sci., 2014, 87: 307
[24] Chu G N, Liu W J.Experimental observations of 5A02 aluminum alloy in electromagnetically assisted tube hydroforming[J]. JOM, 2013, 65: 599
[27] Hu Z L. Research on the plastic deformation behavior of friction stir welded2024 aluminum alloy tube [D]. Harbin: Harbin Institute of Technology, 201
[27] 3(胡志力. 2024铝合金搅拌摩擦焊管材塑性变形行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013)
[25] Chu G N, Yang S, Wang J X.Mechanics condition of thin-walled tubular component with rib hydroforming[J]. Trans. Nonferrous Met. Soc. China, 2012, 22(suppl.2): s280
[26] Hu W L, Lin Y L, Yuan S J, et al. Constitutive models for regression of various experimental stress-strain relations [J]. Int. J. Mech. Sci., 2015, 101-102: 1
[27] Hu Z L. Research on the plastic deformation behavior of friction stir welded2024 aluminum alloy tube [D]. Harbin: Harbin Institute of Technology, 201
[27] 3(胡志力. 2024铝合金搅拌摩擦焊管材塑性变形行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013)
[1] 梅益, 孙全龙, 喻丽华, 王传荣, 肖华强. 基于GA-ELM的铝合金压铸件晶粒尺寸预测[J]. 金属学报, 2017, 53(9): 1125-1132.
[2] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[3] 侯陇刚, 刘明荔, 王新东, 庄林忠, 张济山. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53(9): 1075-1090.
[4] 林艳丽, 何祝斌, 初冠南, 闫永达. 利用管状试样测试各向异性材料双向应力状态力学性能的新方法[J]. 金属学报, 2017, 53(9): 1101-1109.
[5] 陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出过程的小角度X射线散射定量表征[J]. 金属学报, 2017, 53(8): 897-906.
[6] 杨建海,张玉祥,葛利玲,程晓,陈家照,高杨. 焊前混合表面纳米化对2A14铝合金搅拌摩擦焊接头微观组织和力学性能的影响[J]. 金属学报, 2017, 53(7): 842-850.
[7] 马明明,连峰,臧路苹,项秋宽,张会臣. 凹坑深度对铝合金表面在不同润滑介质中摩擦学性能的影响[J]. 金属学报, 2017, 53(4): 406-414.
[8] 康举,梁苏莹,吴爱萍,李权,王国庆. 2219铝合金搅拌摩擦焊中的局部液化现象及对接头力学性能的影响[J]. 金属学报, 2017, 53(3): 358-368.
[9] 刘奋军, 傅莉, 陈海燕. 铝合金薄板高转速搅拌摩擦焊接头组织与力学性能[J]. 金属学报, 2017, 53(12): 1651-1658.
[10] 左锦荣,侯陇刚,史金涛,崔华,庄林忠,张济山. 两阶段轧制变形过程中高强铝合金析出相与晶粒结构演变及其对性能的影响*[J]. 金属学报, 2016, 52(9): 1105-1114.
[11] 刘远荣,陈伟民,汤颖,杜勇,张利军. 实用型数值回归法在三元铝合金互扩散系数计算中的应用*[J]. 金属学报, 2016, 52(8): 1009-1016.
[12] 刘政,徐丽娜,余昭福,陈杨政. 电磁场作用下半固态A356-La铝合金初生相形貌及分形维数的研究*[J]. 金属学报, 2016, 52(6): 698-706.
[13] 刘政,张嘉艺,罗浩林,邓可月. 混沌对流下的半固态A356铝合金初生相形貌演变研究*[J]. 金属学报, 2016, 52(2): 177-183.
[14] 吴书舟,易幼平,黄始全,李俊,李晨. 7050铝合金淬火敏感性研究和微观组织分析*[J]. 金属学报, 2016, 52(12): 1503-1509.
[15] 潘峰,崔丽,钱伟,贺定勇,魏世忠. 铝合金/不锈钢双光束激光深熔焊接接头组织及力学性能*[J]. 金属学报, 2016, 52(11): 1388-1394.