Please wait a minute...
金属学报  2017, Vol. 53 Issue (2): 163-174    DOI: 10.11900/0412.1961.2016.00140
  本期目录 | 过刊浏览 |
耐候钢表面氧化皮的结构特征及其对大气腐蚀行为的影响
韩军科1,严红2,黄耀3,周鲁军2,杨善武2()
1 北京工业大学建筑工程学院 北京 100124
2 北京科技大学材料科学与工程学院 北京 1000833 中国电力科学研究院 北京 100192
Structural Features of Oxide Scales on Weathering Steel and Their Influence on Atmospheric Corrosion
Junke HAN1,Hong YAN2,Yao HUANG3,Lujun ZHOU2,Shanwu YANG2()
1 College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
3 China Electric Power Research Institute, Beijing 100192, China
全文: PDF(12031 KB)   HTML
摘要: 

采用XRD、电化学测量和扫描电子显微术研究了耐候钢在400~700 ℃不同时间、不同氧流量条件下形成的氧化皮的结构及其对随后的大气腐蚀行为的影响,发现氧化皮的主要组成为Fe3O4和Fe2O3。氧化皮的电阻远高于裸钢表面的氧化膜,并使样品的自腐蚀电位显著上升。氧化皮分为内外两层,外层疏松,内层致密,氧化皮的保护性主要来自内层。致密的氧化皮形成于500~600 ℃。延长等温时间有利于提高氧化皮的致密度。限氧条件下进行氧化处理不利于氧化皮致密化。致密的氧化皮在腐蚀初期明显延缓了大气腐蚀进程,但在长期腐蚀过程中,反而使腐蚀进程有所加快。这些结果表明,致密的氧化皮在腐蚀过程中难以转化为腐蚀产物,保留于锈层中成为杂质和缺陷,促进了腐蚀。

关键词 耐候钢氧化皮大气腐蚀    
Abstract

Oxide scale on hot rolled strip steel has been successfully applied to decrease the corrosion loss of the steel during its transport and storage. In recent years, some efforts have been made to improve atmospheric corrosion resistance of weathering steel by oxide scale on its surfaces. However, the structure and electrochemical properties of oxide scale and their evolution during atmospheric corrosion still need to be characterized. In this work, XRD, electrochemical test and scanning electron microscopy have been carried out to investigate structures of oxide scales on surfaces of weathering steel samples and their influence on subsequent atmospheric corrosion of the samples. To produce oxide scales, the samples had been held isothermally at 400~700 ℃ in open or close spaces for different times. It has been found that oxide scales consist of Fe3O4 and Fe2O3. The electrical resistance of oxide scales is far higher than that of oxide film on sample which has not been subjected to oxidation treatment. Meanwhile, oxidation results in obviously raised free corrosion potential. Oxide scales are composed of loose outer layers and compact inner layers from which protective action is derived. The relatively compact oxide scales form at 500~600 ℃ while prolonged holding time promotes oxide scales to become compact. The limited oxygen providing inhibits oxide scales to become compact. The compact oxide scales slow down atmospheric corrosion in initial stage while they accelerate atmospheric corrosion after long time. These results indicate that compact oxide scales are difficult to transform into corrosion products and remain as inclusions and defects in the rust layers which accelerate corrosion.

Key wordsweathering steel    oxide scale    atmospheric corrosion
收稿日期: 2016-04-18      出版日期: 2016-11-17
基金资助:国家自然科学基金项目No.51571026和国家电网公司科技项目No.GCB17201400162

引用本文:

韩军科,严红,黄耀,周鲁军,杨善武. 耐候钢表面氧化皮的结构特征及其对大气腐蚀行为的影响[J]. 金属学报, 2017, 53(2): 163-174.
Junke HAN,Hong YAN,Yao HUANG,Lujun ZHOU,Shanwu YANG. Structural Features of Oxide Scales on Weathering Steel and Their Influence on Atmospheric Corrosion. Acta Metall Sin, 2017, 53(2): 163-174.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00140      或      http://www.ams.org.cn/CN/Y2017/V53/I2/163

Sample Temperature Time Cooling
No. h
1 500 3 F.C.
2 500 3 A.C.
3 500 12 F.C.
4 400 12 F.C.
5 500 3 F.C.
6 500 1 F.C.
7 600 1 F.C.
8 700 1 F.C.
表1  不同试样的氧化制备参数
图1  不同试样氧化皮的XRD谱
图2  不同试样氧化皮表面SEM像
图3  不同试样氧化皮截面SEM像
图4  不同试样腐蚀前的EIS
图5  图4中EIS的等效电路模型[19]
图6  不同试样腐蚀前的极化曲线
Sample No. E / V i / (10-5 Acm-2)
0 -0.4610 9.4290
1 -0.3916 0.9224
2 -0.4232 1.0550
3 -0.3392 0.7734
4 -0.4296 1.4820
5 -0.4012 1.2500
6 -0.4633 0.9816
7 -0.3708 0.4504
8 -0.4272 0.5549
表2  不同试样腐蚀前的自腐蚀电位与腐蚀电流
Sample No. α-FeOOH β-FeOOH γ-FeOOH Fe3O4 δ-FeOOH α/γ*[20~22]
0 0.96 1.75 2.18 2.53 92.58 0.15
1 1.09 2.22 3.63 2.40 90.66 0.13
2 1.00 2.14 2.86 2.45 91.55 0.13
3 1.12 3.65 3.19 3.05 88.99 0.11
4 0.82 2.50 2.34 1.97 92.37 0.12
5 1.41 4.79 3.13 3.01 87.66 0.13
6 1.30 3.20 3.59 3.27 88.64 0.13
7 0.93 2.08 2.64 2.67 91.68 0.13
8 1.42 2.96 4.14 4.64 86.84 0.12
表3  不同试样腐蚀80 d后锈层物相相对含量及α/γ*[20~22]值
图8  不同试样腐蚀80 d锈层表面SEM像
图9  不同试样腐蚀80 d锈层截面SEM像
Sample No. 0 d 5 d 15 d 30 d 45 d 60 d 80 d
0 -0.4610 -0.7362 -0.6642 -0.6207 -0.5898 -0.5786 -0.5707
1 -0.3916 -0.7066 -0.6459 -0.6390 -0.6246 -0.6114 -0.6111
2 -0.4232 -0.7170 -0.6387 -0.6406 -0.6167 -0.5931 -0.5915
3 -0.3392 -0.5467 -0.6570 -0.6047 -0.5810 -0.6062 -0.5914
4 -0.4296 -0.7689 -0.6802 -0.6087 -0.5951 -0.5627 -0.5550
5 -0.4012 -0.7370 -0.6531 -0.6427 -0.6230 -0.5826 -0.5890
6 -0.4633 -0.7753 -0.6177 -0.6627 -0.5882 -0.5667 -0.5451
7 -0.3708 -0.7030 -0.6994 -0.6507 -0.5802 -0.5611 -0.5475
8 -0.4272 -0.5771 -0.6691 -0.6329 -0.5691 -0.5547 -0.5507
表4  不同试样腐蚀不同时期的自腐蚀电位
Sample No. 5 d 15 d 30 d 45 d 60 d 80 d
0 33.12 36.89 59.45 55.95 58.81 66.37
1 39.19 32.37 35.76 44.80 50.21 61.98
2 37.48 33.48 36.03 38.91 44.62 45.89
3 51.60 38.72 43.69 38.13 49.13 50.87
4 30.64 29.88 49.06 42.02 63.52 63.44
5 30.71 28.86 33.27 40.29 50.84 62.75
6 25.37 30.65 49.95 62.23 83.58 86.70
7 55.56 33.08 56.74 71.77 84.58 98.09
8 133.70 41.72 47.52 65.20 81.60 92.53
表5  不同试样腐蚀不同时期的锈层电阻
图10  带锈层试样EIS的等效电路模型[23,24]
图11  不同试样腐蚀80 d后锈层的吸水-脱水曲线
[1] Sun W H, Tieu A K, Jiang Z Y, et al.Surface characteristics of oxide scale in hot strip rolling[J]. J. Mater. Process. Technol., 2003, 140: 76
[2] Sun W H, Tieu A K, Jiang Z Y, et al. Oxide scales growth of low-carbon steel at high temperatures[D] [J]. J. Mater. Process. Technol., 2004, 155-156: 1300
[3] Sun W H, Tieu A K, Jiang Z Y, et al. High temperature oxide scale characteristics of low carbon steel in hot rolling [J]. J. Mater. Process. Technol ., 2004,155-156: 1307
[4] Jiang Z Y, Tieu A K, Sun W H, et al. Characterisation of thin oxide scale and its surface roughness in hot metal rolling[D] [J]. Mater. Sci. Eng., 2006, A435-436: 434
[5] Gu Q D, Dong C F, Li X G, et al.Corrosion behavior and structure of oxide scales formed on hot rolled strips after coiling with different oxygen supplies[J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 1564
[5] (顾其德, 董超芳, 李晓刚等. 卷曲后供氧差异对热轧带钢氧化皮组织及耐蚀性的影响[J]. 北京科技大学学报, 2009, 31: 1564)
[6] Hua X Z, Fu M H, Chen Q J, et al.Research on microstructure and corrosion resistance of high-temperature oxide layer on SS400 steel[J]. Hot Work. Technol., 2009, 38(6): 1
[6] (华小珍, 符明含, 陈庆军等. SS400钢高温氧化层的微观结构及其耐蚀性研究[J]. 热加工工艺, 2009, 38(6): 1)
[7] Zhou X L, Zhu M, Hua X Z, et al.Influence of different cooling methods on corrosion resistance of oxide scale structure of hot rolled strip[J]. J. Chin. Soc. Corros. Prot., 2010, 30: 323
[7] (周贤良, 朱敏, 华小珍等. 不同冷却方式对热轧带钢氧化皮结构及其耐蚀性的影响[J]. 中国腐蚀与防护学报, 2010, 30: 323)
[8] Ye Z G, Zhu M, Zhou X L, et al.Effects of heat treatment temperature on structure and corrosion behavior of original oxide scale on 510L hot rolled strip[J]. J. Mater. Eng., 2011, (5): 53
[8] (叶志国, 朱敏, 周贤良等. 热处理温度对510L热轧带钢原始氧化皮结构及其腐蚀行为的影响[J]. 材料工程, 2011, (5): 53)
[9] Zhou X L, Zhu M, Xue H B, et al.Initial atmospheric corrosion of hot rolled strip steels[J]. J. Chin. Soc. Corros. Prot., 2011, 31: 139
[9] (周贤良, 朱敏, 薛会斌等. 热轧带钢的初期耐大气腐蚀性能[J]. 中国腐蚀与防护学报, 2011, 31: 139)
[10] Yuan W H, Wang F.Influence of control cooling technology on the corrosion resistance of iron scale on hot-rolled wire rod[J]. J. Hunan Univ.: Nat. Sci., 2009, 36(5): 51
[10] (袁武华, 王峰. 控冷工艺对热轧盘条氧化皮耐腐蚀性的影响[J]. 湖南大学学报: 自然科学版, 2009, 36(5): 51)
[11] Dong C F, Xue H B, Li X G, et al.Electrochemical corrosion behavior of hot-rolled steel under oxide scale in chloride solution[J]. Electrochim. Acta, 2009, 54: 4223
[12] Taniguchi S, Yamamoto K, Megumi D, et al.Characteristics of scale/substrate interface area of Si-containing low-carbon steels at high temperatures[J]. Mater. Sci. Eng., 2001, A308: 250
[13] Pérez F J, Martinez L, Hierro M P, et al.Corrosion behaviour of different hot rolled steels[J]. Corros. Sci., 2006, 48: 472
[14] Zhang H M, Qi G T, Dai J B, et al.Influence of high-temperature oxide scales on corrosion of steel substrate[J]. Mater. Prot., 1995, 28(6): 24
[14] (张华民, 齐公台, 戴金彪等. 钢铁表面高温氧化皮对基体钢腐蚀的影响[J]. 材料保护, 1995, 28(6): 24)
[15] Zhang H M, Qi G T, Qiu Y B.Research on Galvanic Corrosion of Carbon Steel and oxide scales[J]. Oil-Gasfield Surf. Eng., 1995, 14(5): 32
[15] (张华民, 齐公台, 邱于斌. 氧化皮——碳钢电偶腐蚀研究[J]. 油气田地面工程, 1995, 14(5): 32)
[16] Meng G Z, Zhang C, Cheng Y F.Effects of corrosion product deposit on the subsequent cathodic and anodic reactions of X-70 steel in near-neutral pH solution[J]. Corros. Sci., 2008, 50: 3116
[17] Zhang X.Influence of environment factors on stablization of rust layers on weathering steel [D].[D] Beijing: University of Science and Technology Beijing, 2014
[17] (张旭. 环境因素对耐候钢锈层稳定化过程的影响 [D]. 北京: 北京科技大学, 2014)
[18] Zhang M, Yang S W, Liu W, et al.A method for determining the protective capacity of rust layer of weathering steel [D][P]. Chin Pat, 200910080987.1, 2009
[18] (张明, 杨善武, 柳伟等. 一种耐候钢锈层保护能力大小的判定方法[D] [P]. 中国专利, 200910080987.1, 2009)
[19] Zhao X, Li W H, Hou B R, et al.Establishment and analysis of equivalent circuit models of electrochemical impedance spectroscopy of organic coating/carbon steel electrode under dry-wet cyclic condition[J]. Mater. Prot., 2011, 44(3): 20
[19] (赵霞, 李伟华, 侯保荣等. 干湿循环条件下有机涂层/碳钢的电化学阻抗谱等效电路模型的建立与解析[J]. 材料保护, 2011, 44(3): 20)
[20] Dillmann P, Mazaudier F, H?rlé S.Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion[J]. Corros. Sci., 2004, 46: 1401
[21] Asami K, Kikuchi M.Characterization of rust layers on weathering steels air-exposed for a long period[J]. Mater. Trans., 2002, 43: 2818
[22] Asami K, Kikuchi M.In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years[J]. Corros. Sci., 2003, 45: 2671
[23] Amirudin A, Thieny D.Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals[J]. Prog. Org. Coat., 1995, 26: 1
[24] Wang J H, Wei F I, Chang Y S, et al.The corrosion mechanisms of carbon steel and weathering steel in SO2 polluted atmospheres[J]. Mater. Chem. Phys., 1997, 47: 1
[25] Luo J.Influence of pre-oxidation on the corrosion behavior of weathering steel [D].[D] Beijing: University of Science and Technology Beijing, 2012
[25] (罗娇. 预氧化对耐候钢腐蚀行为的影响 [D]. 北京: 北京科技大学, 2012)
[26] Yan H.Influence of pre-oxide scales on atmospheric corrosion behavior of weathering steel [D].[D] Beijing: University of Science and Technology Beijing, 2015
[26] (严红. 耐候钢表面预氧化皮对其大气腐蚀行为的影响 [D]. 北京: 北京科技大学, 2015)
[1] 陈星晨, 王杰, 陈德任, 钟舜聪, 王向峰. Na对于Al早期大气腐蚀的影响[J]. 金属学报, 2019, 55(4): 529-536.
[2] 郭明晓, 潘晨, 王振尧, 韩薇. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究[J]. 金属学报, 2018, 54(1): 65-75.
[3] 陈文娟, 郝龙, 董俊华, 柯伟, 文怀梁. 模拟工业-海岸大气中pH值对Q235B钢腐蚀行为的影响*[J]. 金属学报, 2015, 51(2): 191-200.
[4] 陈文娟, 郝龙, 董俊华, 柯伟, 文怀梁. 模拟工业-海岸大气中SO2对Q235B钢腐蚀行为的影响*[J]. 金属学报, 2014, 50(7): 802-810.
[5] 王彬彬, 王振尧, 曹公望, 刘艳洁, 柯伟. 2024铝合金在中国西部盐湖大气环境中的局部腐蚀行为*[J]. 金属学报, 2014, 50(1): 49-56.
[6] 傅欣欣, 董俊华, 韩恩厚, 柯伟. 低碳钢Q235在模拟酸雨大气腐蚀条件下的电化学阻抗谱监测*[J]. 金属学报, 2014, 50(1): 57-63.
[7] 汪兵,刘清友,王向东. 晶粒尺寸对超低碳IF钢耐大气腐蚀性能的影响[J]. 金属学报, 2012, 48(5): 601-606.
[8] 于全成 王振尧 汪川. 表面沉积NaCl和NaHSO3的低合金钢和碳钢在干湿交替条件下的腐蚀行为[J]. 金属学报, 2010, 46(9): 1133-1140.
[9] 王雷 张思勋 董俊华 柯伟 刘春明. Mn-Cu耐候钢的表面龟裂[J]. 金属学报, 2010, 46(6): 723-728.
[10] 林翠 赵晴 刘月娥 梁健能. 含SO2大气中20碳钢腐蚀产物的演变[J]. 金属学报, 2010, 46(3): 358-365.
[11] 柯伟 董俊华. Mn-Cu钢大气腐蚀锈层演化规律及其耐候性的研究[J]. 金属学报, 2010, 46(11): 1365-1378.
[12] 汪兵; 刘清友; 毛新平; 翁宇; 王向东; 贾书君; 董瀚 . 稀土对碳素钢在 0.3 mol/L NaCl 溶液中耐蚀性能的影响[J]. 金属学报, 2008, 44(7): 863-866 .
[13] 安百刚; 张学元; 韩恩厚 . 沈阳大气环境下纯铜的初期腐蚀行为研究[J]. 金属学报, 2007, 42(1): 77-81 .
[14] 宋诗哲; 陶蕾; 王守琰; 张晓云; 刘明; 陆峰 . LC4CS铝合金模拟加速腐蚀试样的图像分析[J]. 金属学报, 2006, 42(4): 426-430 .
[15] 杨仲年; 张昭; 苏景新; 张鉴清; 李自刚; 杨阿娜; 曹楚南 . 耐候钢在2.0%NaCl中性溶液中的腐蚀过程[J]. 金属学报, 2005, 41(8): 860-864 .