Please wait a minute...
金属学报  2016, Vol. 52 Issue (7): 821-830    DOI: 10.11900/0412.1961.2015.00537
  论文 本期目录 | 过刊浏览 |
Er微合金化对2055 Al-Li合金微观组织及力学性能的影响*
李劲风1(),刘丹阳1,郑子樵1,陈永来2,张绪虎2
1 中南大学材料科学与工程学院, 长沙 410083。
2 航天材料及工艺研究所, 北京 100076。
EFFECT OF Er MICRO-ALLOYING ON MECHANICAL PROPERTIES AND MICROSTRUCTURES OF 2055 Al-Li ALLOY
Jinfeng LI1(),Danyang LIU1,Ziqiao ZHENG1,Yonglai CHEN2,Xuhu ZHANG2
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China.
2 Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China.
全文: PDF(1296 KB)   HTML
摘要: 

研究了0.2%及0.4%Er的添加对2055 Al-Li合金T8态时效 (6%预变形+160 ℃时效)微观组织和力学性能的影响. 结果表明, 0.2%Er添加显著降低合金强度, 但延伸率略有增加. 微量Er添加未改变Al-Li合金中时效析出相的种类, 主要强化相仍然为T1相 (Al2CuLi)及θ'相 (Al2Cu), 但时效析出相的数量明显减少, 同时时效析出的响应速度减缓. 2055 Al-Li合金中添加微量Er, 凝固时可形成Al8Cu4Er相粒子, 这些粒子在后续均匀化及固溶处理时均难以完全溶解至固溶体中, 导致固溶基体中Cu含量降低, 因而时效时含Cu析出相T1相及θ'相含量减少, 合金强度降低.

关键词 2055 Al-Li合金Er微合金化微观组织强度    
Abstract

Al-Li alloys are considered as the ideal structural materials for aerospace industry because of their low density, high specific strength and specific elastic modulus as well as low fatigue crack growth rate and good low temperature performance. 2055 Al-Li alloy among new Al-Li alloys developed recently is a super-high strength Al-Li alloy. An important method to improve the performance of Al-Li alloys is to add micro-alloying elements. Er-microalloying in Al alloy has been investigated much, but the study on Al-Li alloy is still seldom reported. In this work, the effect of 0.2%Er and 0.4%Er addition on the microstructure and mechanical properties of 2055 Al-Li alloy sheet with T8 aging (6% cold rolling pre-deformation and aging at 160 ℃) were investigated. The results show that the addition of 0.2% Er significantly decreases the strength by about 50 MPa, but enhances the elongation; the strength is further decreased by about 100 MPa with the addition of 0.4%Er. The precipitate types in Er micro-alloyed Al-Li alloy are not changed with the addition of Er, and the aging precipitates are still T1 (Al2CuLi) and θ' (Al2Cu) phases. In the Er-microalloyed Al-Li alloy, the incubation time of T1 precipitate is longer, and its precipitation rate is decreased, accordingly the aging response is slowed. Meanwhile, under peak-aging condition, the fraction of T1 precipitates, especially θ' precipitates in the Er-microalloyed Al-Li alloy is decreased, which results in a decrease of strength. As Er is added to the Al-Li alloy, Er-contained particles Al8Cu4Er are formed during solidification process, and their amount is increased with the addition increasing. These particles cannot be completely dissolved into the alloy matrix during homogenization process. After solution treatment following cold rolling, they are not yet dissolved into the solid solution. These particles contain Cu and Er simultaneously, and the concentration of dissolved Cu in solid solution is therefore decreased. With increasing Er addition, the Cu concentration in solid solution is further decreased. The precipitation rate of T1 is consequently decreased, slowing the aging response of the Er-microalloyed Al-Li alloy. And this factor also decreases the fraction of T1 and θ' precipitates and lowers the alloy strength.

Key words2055 Al-Li alloy    Er micro-alloying    microstructure    strength
收稿日期: 2015-10-18      出版日期: 2016-04-26
基金资助:* 国家高技术研究发展计划项目2013AA032401和中南大学教师基金项目2013JSJJ001资助

引用本文:

李劲风,刘丹阳,郑子樵,陈永来,张绪虎. Er微合金化对2055 Al-Li合金微观组织及力学性能的影响*[J]. 金属学报, 2016, 52(7): 821-830.
Jinfeng LI,Danyang LIU,Ziqiao ZHENG,Yonglai CHEN,Xuhu ZHANG. EFFECT OF Er MICRO-ALLOYING ON MECHANICAL PROPERTIES AND MICROSTRUCTURES OF 2055 Al-Li ALLOY. Acta Metall Sin, 2016, 52(7): 821-830.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00537      或      http://www.ams.org.cn/CN/Y2016/V52/I7/821

Alloy Cu Li
2055 3.58 1.18
2055+0.2%Er 3.56 1.19
2055+0.4%Er 3.60 1.11
表1  实验用Al-Li合金中的Cu, Li含量
图1  Al-Li合金在T8态时效(6%冷轧预变形+160 ℃时效)时力学性能随时效时间的变化曲线
图2  不含Er及含0.2%Er的Al-Li合金在160 ℃时效4 h后的SAED谱和TEM像
图3  不含Er及含0.2%Er的Al-Li合金T8峰时效时的TEM暗场像
图4  不同Er含量Al-Li合金铸态组织的BSE像
图5  含0.2%Er的Al-Li合金铸态组织中第二相粒子EDS分析
图6  不同Er含量Al-Li合金均匀化处理后的BSE像
图7  不含Er的2055 Al-Li合金均匀化组织的BSE像及第二相粒子的EDS分析
图8  含0.2%Er的Al-Li合金均匀化组织的BSE像及第二相粒子的EDS分析
图9  含0.4%Er的Al-Li合金铸态及均匀化后的XRD谱
图10  含0.2%Er的Al-Li合金及2055 Al-Li合金的BSE像
图11  含0.4% Er的Al-Li合金固溶处理后BSE像和未溶第二相粒子EDS分析
表2  Al-Li合金原始Cu和Li含量及固溶处理后固溶体的Cu和Li含量
[1] Rioja R J, Liu J.Metall Mater Trans, 2012; 43A: 3325
[2] Li J F, Zheng Z Q, Chen Y L, Zhang X H.Aero Mater Technol, 2012; 42(1): 13
[2] (李劲风, 郑子樵, 陈永来, 张绪虎. 宇航材料工艺, 2012; 42(1): 13)
[3] Rioja R J, Denzer D K, Mooy D, Venema G B.In: Weiland H, Rollett A D, Cassada W A, Eds., Proceedings of the 13th International Conference on Aluminum Alloys (ICAA13). Pittsburg: TMS, 2012: 593
[4] Wang R Q, Zheng Z Q, Chen Y Y, Li S C, Wei X Y.Rare Met Mater Eng, 2009; 38: 622
[4] (王瑞琴, 郑子樵, 陈圆圆, 李世晨, 魏修宇. 稀有金属材料与工程, 2009; 38: 622)
[5] Yi H K, Zheng Z Q.J Cent South Univ Technol: Nat Sci, 1999; 30: 292
[5] (易宏坤, 郑子樵. 中南工业大学学报(自然科学版), 1999; 30: 292)
[6] Hirosawa S, Sato T, Kamio A. Mater Sci Eng, 1998; A242: 195
[7] Murayama M, Hono K.Scr Mater, 1998; 38: 1315
[8] Jiang N, Gao X, Zheng Z Q.Trans Nonferrous Met Soc, 2010; 20: 740
[9] Wei X Y, Zheng Z Q, She L J, Chen Q N, Li S C.Rare Met Mater Eng, 2010; 39: 1583
[9] (魏修宇, 郑子樵, 佘玲娟, 陈秋妮, 李世晨. 稀有金属材料与工程, 2010; 39: 1583)
[10] Zhu X H, Zheng Z Q, Zhong S.Chin J Nonferrous Met, 2010; 20: 1861
[10] (朱小辉, 郑子樵, 钟申. 中国有色金属学报, 2010; 20: 1861)
[11] Romios M, Tiraschi R, Parrish C, Babel H W, Ogren J R, Es-Said O S. J Mater Eng Perform, 2005; 14: 641
[12] Yuan Z S, Lu Z, Xie Y H, Dai S L, Liu C S.J Aeron Mater, 2006; 26(3): 79
[12] (袁志山, 陆政, 谢优华, 戴圣龙, 刘常升. 航空材料学报, 2006; 26(3): 79)
[13] Wang Z. Master Thesis, Central South University, Changsha, 2014
[13] (王哲. 中南大学硕士学位论文, 长沙, 2014)
[14] Xu G F, Yang J J, Jin T N, Nie Z R, Yin Z M.Chin J Nonferrous Met, 2006; 16: 768
[14] (徐国富, 杨军军, 金头男, 聂祚仁, 尹志民. 中国有色金属学报, 2006; 16: 768)
[15] Yang J J, Nie Z R, Jin T N, Ruan H Q, Zuo T Y.Chin J Nonferrous Met, 2004; 14: 620
[15] (杨军军, 聂祚仁, 金头男, 阮海琼, 左铁镛. 中国有色金属学报, 2004; 14: 620)
[16] Fu J B, Nie Z R, Yang J J, Jin T N, Zou J X, Zuo T Y.Chin J Rare Met, 2005; 29: 558
[16] (付静波, 聂祚仁, 杨军军, 金头男, 邹景霞, 左铁镛. 稀有金属, 2005; 29: 558)
[17] Xu G F, Mou S Z, Yang J J, Jin T N, Nie Z R, Yin Z M.Trans Nonferrous Met Soc, 2006; 16: 106
[18] Yang J J, Nie Z R, Jin T N, Xu G F, Fu J B, Yuan H Q, Zuo T Y.Trans Nonferrous Met Soc, 2003; 13: 1035
[19] Zhao Z K, Zhou T T, Liu P Y, Chen C Q.Rare Met Mater Eng, 2004; 33: 1108
[19] (赵中魁, 周铁涛, 刘培英, 陈昌麒. 稀有金属材料与工程, 2004; 33: 1108)
[20] Qin X. Master Thesis, Beijing University of Technology, 2004
[20] (秦肖. 北京工业大学硕士学位论文, 2004)
[21] Yang J J, Nie Z R, Jin T N, Xu G F, Fu J B, Zuo T Y.J Chin Rare Earth Soc, 2002; 20: 159
[21] (杨军军, 聂祚仁, 金头男, 徐国富, 付静波, 左铁镛. 中国稀土学报, 2002; 20: 159)
[22] Li Y T, Liu Z Y, Xia Q K, Yu R C, Liu Y B.Trans Mater Heat Treat, 2007; 28(2): 49
[22] (李云涛, 刘志义, 夏卿坤, 余日成, 刘延斌. 材料热处理学报, 2007; 28(2): 49)
[23] Li Y T, Liu Z Y, Xia Q K, Yu R C.J Cent South Univ Technol: Nat Sci, 2006; 37: 1043
[23] (李云涛, 刘志义, 夏卿坤, 余日成. 中南大学学报(自然科学版), 2006; 37: 1043)
[24] Denzer D K, Rioja R J, Rioja R J, Venema G B, Colvin E L.In: Weiland H, Rollett A D, Cassada W A, Eds., Proceedings of the 13th International Conference on Aluminum Alloys (ICAA13). Pittsburg: TMS, 2012: 587
[25] Luo X F, Zheng Z Q, Zhong J F, Zhang H F, Zhong J, Li S C, Li J F.Chin J Nonferrous Met, 2013; 23: 1833
[25] (罗先甫, 郑子樵, 钟继发, 张海锋, 钟警, 李世晨, 李劲风. 中国有色金属学报, 2013; 23: 1833)
[26] Dursun T, Soutis C.Mater Des, 2014; 56: 862
[27] Li J F, Liu P L, Chen Y L, Zhang X H, Zheng Z Q.Trans Nonferrous Met Soc China, 2015; 25: 2103
[28] Zhang J, Zhu R H, Li J F, Ma Y L, Liu D B, Zheng Z Q.Chin J Nonferrous Met, 2015; 25: 3300
[28] (张健, 朱瑞华, 李劲风, 马云龙, 刘德博, 郑子樵. 中国有色金属学报, 2015; 25: 3300)
[29] Decreus B, Deschamps A, De Geuser F, Donnadieu P, Sigli C, Weyland M.Acta Mater, 2013; 61: 2207
[30] Lei G X. Light Alloy Fabr Technol, 1990; (2): 5
[30] (雷广孝. 轻合金加工技术, 1990; (2): 5)
[31] Tang A T.Chin Rare Earths, 1991; 12(5): 48
[31] (汤爱涛. 稀土, 1991; 12(5): 48)
[32] Pan F S, Zhou S Z, Shi G Q, Ding P D.Light Alloy Fabr Technol, 1990; (3): 1
[32] (潘复生, 周守则, 石功奇, 丁培道. 轻合金加工技术, 1990; (3): 1)
[1] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[2] 张正延,柴锋,罗小兵,陈刚,杨才福,苏航. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为[J]. 金属学报, 2019, 55(6): 783-791.
[3] 冯汉臣,闵学刚,魏大圣,周立初,崔世云,方峰. 低温回火对超大形变冷拔珠光体钢丝显微组织和力学性能的影响[J]. 金属学报, 2019, 55(5): 585-592.
[4] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[5] 刘耀鸿,王朝辉,刘轲,李淑波,杜文博. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响[J]. 金属学报, 2019, 55(3): 389-398.
[6] 何明, 李显亮, 王情伟, 王连钰, 王强. 磁屏蔽对电磁出钢系统中感应加热电源功率损耗的影响[J]. 金属学报, 2019, 55(2): 249-257.
[7] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[8] 陶然, 赵玉涛, 陈刚, 怯喜周. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 160-170.
[9] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[10] 胡宽辉, 毛新平, 周桂峰, 刘静, 王志奋. Si和Mn含量对超高强度热成形钢组织和性能的影响[J]. 金属学报, 2018, 54(8): 1105-1112.
[11] 丁浩, 崔喜平, 许长寿, 李爱滨, 耿林, 范国华, 陈俊锋, 孟松鹤. 连续玄武岩纤维增强铝基层状复合材料的制备与力学特性[J]. 金属学报, 2018, 54(8): 1171-1178.
[12] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[13] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[14] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[15] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.