Please wait a minute...
金属学报  2014, Vol. 50 Issue (12): 1421-1428    DOI: 10.11900/0412.1961.2014.00216
  论文 本期目录 | 过刊浏览 |
喷射成形含铌M3型高速钢组织与性能研究
王和斌1, 侯陇刚1, 张金祥1, 卢林1, 于一鹏2, 崔华3, 张济山1
1 北京科技大学新金属材料国家重点实验室, 北京 100083; 2 钢铁研究总院, 北京 100081; 3 北京科技大学材料科学与工程学院, 北京 100083
MICROSTRUCTURES AND PROPERTIES OF SPRAY FORMED Nb-CONTAINING M3 HIGH SPEED STEEL
WANG Hebin1, HOU Longgang1, ZHANG Jinxiang1, LU Lin1, YU Yipeng2, CUI Hua3, ZHANG Jishan1
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083; 2 Central Iron & Steel Research Institute, Beijing 100081; 3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
全文: PDF(6894 KB)   HTML
摘要: 采用喷射成形快速凝固技术制备了M3型高速钢和以Nb代V的M3型高速钢. 利用SEM(EDS), XRD, OM, TEM, HRTEM研究了Nb对M3型高速钢组织的影响和其组织演变. 结果表明, 喷射成形消除了宏观偏析, 细化了组织, 以Nb代V, 可在共晶反应前析出MC型碳化物, 使其球形化、均匀分布, 由于消耗大量C, 共晶M2C碳化物数量减少, 促使更多W和Mo固溶进基体. 均匀分布的高热稳定性含Nb-MC型碳化物能阻碍奥氏体化过程中晶粒长大, 但难以固溶, 使得回火过程中主要析出与基体共格的M2C型碳化物. 喷射成形含Nb钢硬度和弯曲强度高于ASP23钢, 大量硬质MC碳化物易于产生应力集中, 使其韧性稍低于ASP23.
关键词 喷射成形M3型高速钢Nb显微组织    
Abstract:The billets of M3 high speed steel (HSS) with or without niobium addition were prepared via spray forming and compared with traditional cast steels with same composition, followed by hot forged and heat treated. The corresponding microstructure evolutions of steels induced by niobium have been investigated using SEM with EDS, XRD, OM, TEM and HRTEM. The results show that finer and uniformly-distributed grains without macrosegregation appear in the as-deposited HSS that are different to the as-cast HSS, 1% (mass fraction) niobium addition can promote the formation of primary MC-type carbides before onset of eutectic reaction, which can make the MC particles refined and evenly distributed. Niobium mainly contribute to the primary MC-type carbides by consuming carbon, the eutectic reaction is suppressed and the quantity of M2C eutectic carbides decrease, leading to more W and Mo atoms dissolve into matrix. Compared to spray formed M3 HSS, the niobium alloying M3 HSS possesses higher stability during austenitization, induced by the high stabilization of Nb-containing MC carbides, which can pin the grain boundaries and keep the grain size of primary austenite below that of spray formed M3 HSS. The quenched hardness of niobium-containing steel is remarkably higher, while the over tempering hardness of it is a little below than that of M3 HSS, it is related to the difference of dissolution rate of carbides during austenitization and the precipitation behavior of the secondary carbides after tempering. The amount of Nb-containing MC carbides are hard to dissolve into matrix, additionally, lower content of M2C carbides are in the as-deposited steel, leading to the larger numbers of nano-scaled M2C secondary carbides precipitate after tempering. Spray formed niobium-containing steel has a more advanced hardness and bending strength compared with ASP23, but possesses a lower impact toughness due to that the stress concentration can easily caused by mass of harder MC carbides distributed in matrix.
Key wordsspray forming    M3 high speed steel    Nb    microstructure
     出版日期: 2014-12-25
基金资助:*国家重点基础研究发展计划资助项目2011CB606303
Corresponding author: Correspondent: HOU Longgang, Tel: (010)82376643, E-mail: lghou@skl.ustb.edu.cn   
作者简介: 王和斌, 男, 1985年生, 博士生

引用本文:

王和斌, 侯陇刚, 张金祥, 卢林, 于一鹏, 崔华, 张济山. 喷射成形含铌M3型高速钢组织与性能研究[J]. 金属学报, 2014, 50(12): 1421-1428.
WANG Hebin, HOU Longgang, ZHANG Jinxiang, LU Lin, YU Yipeng, CUI Hua, ZHANG Jishan. MICROSTRUCTURES AND PROPERTIES OF SPRAY FORMED Nb-CONTAINING M3 HIGH SPEED STEEL. Acta Metall, 2014, 50(12): 1421-1428.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2014.00216      或      http://www.ams.org.cn/CN/Y2014/V50/I12/1421

图1  沉积态和铸造态试样的SEM像
图2  沉积态M3和MN1钢的XRD谱
  
图4  MN1和M3钢经580 ℃ 3次回火的TEM像和相应的SAED谱
图5  M3, MN1钢和ASP23的力学性能曲线
图6  MN1和APS23室温冲击断口形貌
表1  实验材料的化学成分
表2  沉积态M3和MN1中一次碳化物的EDS分析结果
表3  1180和1220 ℃淬火后碳化物体积分数、残余奥氏体含量、a-Fe晶格常数以及淬火态硬度
[1] Hwang K C, Lee S, Lee H C. Mater Sci Eng, 1998; A254: 282
[2] Steven G, Nehrenberg A E, Philip V. Trans Am Soc Met, 1964; 57: 925
[3] Kuo K. J Iron Steel Inst, 1953; 174: 223
[4] Hwang K C, Lee S, Lee H C. Mater Sci Eng, 1998; A254: 296
[5] Mesquita R A, Barbosa C A. Mater Sci Forum, 2005; 498-499: 244
[6] Hellman P. Scand J Metall, 1998; 27: 44
[7] Kumar K S, Lawley A, Koczak M J. Metall Mater Trans, 1991; 22A: 2733
[8] Singer A R E. Mater Sci Eng, 1991; A135: 13
[9] Grant P S. Prog Mater Sci, 1995; 39: 497
[10] Forrest J, Price R, Hanlon D N. Int J Powder Metall, 1997; 33: 21
[11] Lavernia E J, Grant N J. Mater Sci Eng, 1988; A98: 381
[12] Grant P S. Metall Mater Trans, 2007; 38A: 1520
[13] Liang X, Lavernia E J. Mater Sci Eng, 1993; A161: 221
[14] Mesquita R A, Barbosa C A. Mater Sci Eng, 2004; A383: 87
[15] Schulz A, Uhlenwinkel V, Escher C. Mater Sci Eng, 2008; A477: 69
[16] Cui C, Fritsching U, Schulz A. J Mater Sci, 2004; 39: 5639
[17] Yang Y F, Hannula S P. Mater Sci Eng, 2004; A383: 39
[18] Yang Y F, Hannula S P. Mater Sci Eng, 2008; A477: 63
[19] Zhang J G, Sun D S, Shi H S. Mater Sci Eng, 2002; A326: 20
[20] Zhang G Q, Yuan H, Jiao D L, Li Z, Zhang Y, Liu Z W. Mater Sci Eng, 2012; A558: 566
[21] Yu Y P, Huang J F, Cui H, Cai Y H, Zhang J S. Acta Metall Sin, 2012; 48: 935 (于一鹏, 黄进峰, 崔 华, 蔡元华, 张济山. 金属学报, 2012; 48: 935)
[22] Karag?z S, Fischmeister H F. Metall Trans, 1988; 19A: 1395
[23] Dobrzanski L A, Zarychta A, Ligarski M. J Mater Process Technol, 1997; 63: 531
[24] Heisterkamp F, Keown S R. Metall Mater, 1978; 10: 35
[25] Keown S R, Kudielka E, Heisterkamp F. Met Technol, 1980; 7: 50
[26] Lee E S, Park W J, Baik K Y, Ahn S. Scr Mater, 1998; 39: 1133
[27] Lee E S, Park W J, Jung J Y, Ahn S. Metall Mater Trans, 1998; 29A: 1395
[28] Fredriksson H, Hillert M, Nica M. Scand J Metall, 1979; 8: 115
[29] Zhou X F, Fang F, Li G. ISIJ Int, 2010; 50: 1151
[30] Wang R, Dunlop G. Acta Metall, 1984; 32: 1591
[31] Wang R, Andren H, Wisell H, Dunlop G. Acta Metall, 1992; 40: 1727
[32] Fischmeister H, Karag?z S, Andren H. Acta Metall, 1988; 36: 817
[33] Karag?z S, Fischmeister H F, Andren H. Metall Trans, 1992; 23A: 1631
[34] Stiller K, Svensson L, Howell P R, Wang R, Andren H, Dunlop G L. Acta Metall, 1984; 32: 1457
[1] 席明哲, 吕超, 吴贞号, 尚俊英, 周玮, 董荣梅, 高士友. 连续点式锻压激光快速成形TC11钛合金的组织和力学性能[J]. 金属学报, 2017, 53(9): 1065-1074.
[2] 惠亚军, 潘辉, 刘锟, 李文远, 于洋, 陈斌, 崔阳. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制[J]. 金属学报, 2017, 53(8): 937-946.
[3] 陈波, 郝宪朝, 马颖澈, 查向东, 刘奎. 添加N对Inconel 690合金显微组织和晶界微区成分的影响[J]. 金属学报, 2017, 53(8): 983-990.
[4] 杨建海,张玉祥,葛利玲,程晓,陈家照,高杨. 焊前混合表面纳米化对2A14铝合金搅拌摩擦焊接头微观组织和力学性能的影响[J]. 金属学报, 2017, 53(7): 842-850.
[5] 舒志强,袁鹏斌,欧阳志英,龚丹梅,白雪明. 回火温度对26CrMo钻杆钢显微组织和力学性能的影响[J]. 金属学报, 2017, 53(6): 669-676.
[6] 何仙灵,杨庚蔚,毛新平,余驰斌,达传李,甘晓龙. Nb对Ti-Mo微合金钢连续冷却相变规律及组织性能的影响[J]. 金属学报, 2017, 53(6): 648-656.
[7] 谷倩倩, 阮莹, 朱海哲, 闫娜. 冷却速率对急冷Fe-Al-Nb三元合金凝固组织形成的影响[J]. 金属学报, 2017, 53(6): 641-647.
[8] 孙磊,陈明和,张亮,杨帆. Sn-Ag-Cu钎料焊接显微组织演化和性能研究[J]. 金属学报, 2017, 53(5): 615-621.
[9] 陈兵,高长源,黄娇,毛亚婧,姚美意,张金龙,周邦新,李强. β-(Nb, Zr)第二相合金在360 ℃去离子水中的腐蚀行为[J]. 金属学报, 2017, 53(4): 447-454.
[10] 张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.
[11] 江鹏,袁同心,于彦东. 加工条件对多相V-Ti-Ni合金的显微组织和氢渗透性能的影响[J]. 金属学报, 2017, 53(4): 433-439.
[12] 刘丰刚,林鑫,宋衎,宋梦华,韩一帆,黄卫东. 激光修复300M钢的组织及力学性能研究[J]. 金属学报, 2017, 53(3): 325-334.
[13] 张婷婷,祁阳,刘刚,刘鸣华. 形貌可控NaNbO3的生长机理和光催化性能[J]. 金属学报, 2017, 53(3): 376-384.
[14] 王峰,董海阔,王志,毛萍莉,刘正. Mg-5Al-xCa合金的热裂行为[J]. 金属学报, 2017, 53(2): 211-219.
[15] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.