Please wait a minute...
金属学报  2014, Vol. 50 Issue (12): 1421-1428    DOI: 10.11900/0412.1961.2014.00216
  论文 本期目录 | 过刊浏览 |
喷射成形含铌M3型高速钢组织与性能研究
王和斌1, 侯陇刚1, 张金祥1, 卢林1, 于一鹏2, 崔华3, 张济山1
1 北京科技大学新金属材料国家重点实验室, 北京 100083; 2 钢铁研究总院, 北京 100081; 3 北京科技大学材料科学与工程学院, 北京 100083
MICROSTRUCTURES AND PROPERTIES OF SPRAY FORMED Nb-CONTAINING M3 HIGH SPEED STEEL
WANG Hebin1, HOU Longgang1, ZHANG Jinxiang1, LU Lin1, YU Yipeng2, CUI Hua3, ZHANG Jishan1
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083; 2 Central Iron & Steel Research Institute, Beijing 100081; 3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
全文: PDF(6894 KB)   HTML
摘要: 采用喷射成形快速凝固技术制备了M3型高速钢和以Nb代V的M3型高速钢. 利用SEM(EDS), XRD, OM, TEM, HRTEM研究了Nb对M3型高速钢组织的影响和其组织演变. 结果表明, 喷射成形消除了宏观偏析, 细化了组织, 以Nb代V, 可在共晶反应前析出MC型碳化物, 使其球形化、均匀分布, 由于消耗大量C, 共晶M2C碳化物数量减少, 促使更多W和Mo固溶进基体. 均匀分布的高热稳定性含Nb-MC型碳化物能阻碍奥氏体化过程中晶粒长大, 但难以固溶, 使得回火过程中主要析出与基体共格的M2C型碳化物. 喷射成形含Nb钢硬度和弯曲强度高于ASP23钢, 大量硬质MC碳化物易于产生应力集中, 使其韧性稍低于ASP23.
关键词 喷射成形M3型高速钢Nb显微组织    
Abstract:The billets of M3 high speed steel (HSS) with or without niobium addition were prepared via spray forming and compared with traditional cast steels with same composition, followed by hot forged and heat treated. The corresponding microstructure evolutions of steels induced by niobium have been investigated using SEM with EDS, XRD, OM, TEM and HRTEM. The results show that finer and uniformly-distributed grains without macrosegregation appear in the as-deposited HSS that are different to the as-cast HSS, 1% (mass fraction) niobium addition can promote the formation of primary MC-type carbides before onset of eutectic reaction, which can make the MC particles refined and evenly distributed. Niobium mainly contribute to the primary MC-type carbides by consuming carbon, the eutectic reaction is suppressed and the quantity of M2C eutectic carbides decrease, leading to more W and Mo atoms dissolve into matrix. Compared to spray formed M3 HSS, the niobium alloying M3 HSS possesses higher stability during austenitization, induced by the high stabilization of Nb-containing MC carbides, which can pin the grain boundaries and keep the grain size of primary austenite below that of spray formed M3 HSS. The quenched hardness of niobium-containing steel is remarkably higher, while the over tempering hardness of it is a little below than that of M3 HSS, it is related to the difference of dissolution rate of carbides during austenitization and the precipitation behavior of the secondary carbides after tempering. The amount of Nb-containing MC carbides are hard to dissolve into matrix, additionally, lower content of M2C carbides are in the as-deposited steel, leading to the larger numbers of nano-scaled M2C secondary carbides precipitate after tempering. Spray formed niobium-containing steel has a more advanced hardness and bending strength compared with ASP23, but possesses a lower impact toughness due to that the stress concentration can easily caused by mass of harder MC carbides distributed in matrix.
Key wordsspray forming    M3 high speed steel    Nb    microstructure
     出版日期: 2014-12-25
基金资助:*国家重点基础研究发展计划资助项目2011CB606303
Corresponding author: Correspondent: HOU Longgang, Tel: (010)82376643, E-mail: lghou@skl.ustb.edu.cn   
作者简介: 王和斌, 男, 1985年生, 博士生

引用本文:

王和斌, 侯陇刚, 张金祥, 卢林, 于一鹏, 崔华, 张济山. 喷射成形含铌M3型高速钢组织与性能研究[J]. 金属学报, 2014, 50(12): 1421-1428.
WANG Hebin, HOU Longgang, ZHANG Jinxiang, LU Lin, YU Yipeng, CUI Hua, ZHANG Jishan. MICROSTRUCTURES AND PROPERTIES OF SPRAY FORMED Nb-CONTAINING M3 HIGH SPEED STEEL. Acta Metall Sin, 2014, 50(12): 1421-1428.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2014.00216      或      http://www.ams.org.cn/CN/Y2014/V50/I12/1421

图1  沉积态和铸造态试样的SEM像
图2  沉积态M3和MN1钢的XRD谱
  
图4  MN1和M3钢经580 ℃ 3次回火的TEM像和相应的SAED谱
图5  M3, MN1钢和ASP23的力学性能曲线
图6  MN1和APS23室温冲击断口形貌
表1  实验材料的化学成分
表2  沉积态M3和MN1中一次碳化物的EDS分析结果
表3  1180和1220 ℃淬火后碳化物体积分数、残余奥氏体含量、a-Fe晶格常数以及淬火态硬度
[1] Hwang K C, Lee S, Lee H C. Mater Sci Eng, 1998; A254: 282
[2] Steven G, Nehrenberg A E, Philip V. Trans Am Soc Met, 1964; 57: 925
[3] Kuo K. J Iron Steel Inst, 1953; 174: 223
[4] Hwang K C, Lee S, Lee H C. Mater Sci Eng, 1998; A254: 296
[5] Mesquita R A, Barbosa C A. Mater Sci Forum, 2005; 498-499: 244
[6] Hellman P. Scand J Metall, 1998; 27: 44
[7] Kumar K S, Lawley A, Koczak M J. Metall Mater Trans, 1991; 22A: 2733
[8] Singer A R E. Mater Sci Eng, 1991; A135: 13
[9] Grant P S. Prog Mater Sci, 1995; 39: 497
[10] Forrest J, Price R, Hanlon D N. Int J Powder Metall, 1997; 33: 21
[11] Lavernia E J, Grant N J. Mater Sci Eng, 1988; A98: 381
[12] Grant P S. Metall Mater Trans, 2007; 38A: 1520
[13] Liang X, Lavernia E J. Mater Sci Eng, 1993; A161: 221
[14] Mesquita R A, Barbosa C A. Mater Sci Eng, 2004; A383: 87
[15] Schulz A, Uhlenwinkel V, Escher C. Mater Sci Eng, 2008; A477: 69
[16] Cui C, Fritsching U, Schulz A. J Mater Sci, 2004; 39: 5639
[17] Yang Y F, Hannula S P. Mater Sci Eng, 2004; A383: 39
[18] Yang Y F, Hannula S P. Mater Sci Eng, 2008; A477: 63
[19] Zhang J G, Sun D S, Shi H S. Mater Sci Eng, 2002; A326: 20
[20] Zhang G Q, Yuan H, Jiao D L, Li Z, Zhang Y, Liu Z W. Mater Sci Eng, 2012; A558: 566
[21] Yu Y P, Huang J F, Cui H, Cai Y H, Zhang J S. Acta Metall Sin, 2012; 48: 935 (于一鹏, 黄进峰, 崔 华, 蔡元华, 张济山. 金属学报, 2012; 48: 935)
[22] Karag?z S, Fischmeister H F. Metall Trans, 1988; 19A: 1395
[23] Dobrzanski L A, Zarychta A, Ligarski M. J Mater Process Technol, 1997; 63: 531
[24] Heisterkamp F, Keown S R. Metall Mater, 1978; 10: 35
[25] Keown S R, Kudielka E, Heisterkamp F. Met Technol, 1980; 7: 50
[26] Lee E S, Park W J, Baik K Y, Ahn S. Scr Mater, 1998; 39: 1133
[27] Lee E S, Park W J, Jung J Y, Ahn S. Metall Mater Trans, 1998; 29A: 1395
[28] Fredriksson H, Hillert M, Nica M. Scand J Metall, 1979; 8: 115
[29] Zhou X F, Fang F, Li G. ISIJ Int, 2010; 50: 1151
[30] Wang R, Dunlop G. Acta Metall, 1984; 32: 1591
[31] Wang R, Andren H, Wisell H, Dunlop G. Acta Metall, 1992; 40: 1727
[32] Fischmeister H, Karag?z S, Andren H. Acta Metall, 1988; 36: 817
[33] Karag?z S, Fischmeister H F, Andren H. Metall Trans, 1992; 23A: 1631
[34] Stiller K, Svensson L, Howell P R, Wang R, Andren H, Dunlop G L. Acta Metall, 1984; 32: 1457
[1] 李玲,姚生莲,赵晓丽,杨佳佳,王野熹,王鲁宁. 阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究[J]. 金属学报, 2019, 55(8): 1008-1018.
[2] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[3] 卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
[4] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[5] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[6] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[7] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[8] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[9] 贺志荣, 吴佩泽, 刘康凯, 冯辉, 杜雨青, 冀荣耀. 激冷Ti-47Ni合金薄带的组织、相变和形状记忆行为[J]. 金属学报, 2018, 54(8): 1157-1164.
[10] 徐士新, 余伟, 李舒笳, 王坤, 孙齐松. 预变形温度对纳米贝氏体相变动力学及组织的影响[J]. 金属学报, 2018, 54(8): 1113-1121.
[11] 高飘, 魏恺文, 喻寒琛, 杨晶晶, 王泽敏, 曾晓雁. 分层厚度对选区激光熔化成形Ti-5Al-2.5Sn合金组织与性能的影响规律[J]. 金属学报, 2018, 54(7): 999-1009.
[12] 刘廷光, 夏爽, 白琴, 周邦新. 316L不锈钢的三维晶粒与晶界形貌特征及尺寸分布[J]. 金属学报, 2018, 54(6): 868-876.
[13] 朱鸣芳, 邢丽科, 方辉, 张庆宇, 汤倩玉, 潘诗琰. 合金凝固枝晶粗化的研究进展[J]. 金属学报, 2018, 54(5): 789-800.
[14] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[15] 黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384.