Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (7): 887-891    DOI:
论文 Current Issue | Archive | Adv Search |
HOT COMPRESSION BEHAVIOR AND FLOW STRESS PREDICTION OF ZK60 MAGNESIUM ALLOY
QIN YinJiang; PAN Qinglin; HE Yunbin; LI Wenbin; LIU Xiaoyan; FAN Xi
School of Materials Science and Engineering; Central South University; Changsha 410083
Cite this article: 

QIN YinJiang PAN Qinglin HE Yunbin LI Wenbin LIU Xiaoyan FAN Xi. HOT COMPRESSION BEHAVIOR AND FLOW STRESS PREDICTION OF ZK60 MAGNESIUM ALLOY. Acta Metall Sin, 2009, 45(7): 887-891.

Download:  PDF(1048KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to study the workability and establish the flow stress constitutive equation for ZK60 magnesium alloy, hot compressive deformation behavior of the magnesium alloy was investigated at the temperature range from 523 to 673 K and strain rate range from 0.001 to 1 s-1 on Gleeble--1500 thermal simulator. The results show that flow stress of ZK60 magnesium alloy decreases with the increase of deformation temperature and the decrease of strain rate. The flow stress curves obtained from experiments are composed of four different stages, i.e., work hardening, transition, softening and steady stages. While for the relative high temperature and low strain rate, transition stage is not very obvious. A method to predict flow stress considering the effect of true strain was presented. Flow stress model is expressed by nine independent parameters and they are obtained by Least--Square method. The predicted stress--strain curves are in good agreement with the experimental results, which confirmed that the developed model can give a reasonable estimate of the flow stress for ZK60 magnesium alloy.

Key words:  ZK60 magnesium alloy      flow stress      hot deformation      dynamic recrystallization     
Received:  08 December 2008     
ZTFLH: 

TG146.21

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I7/887

[1] Clow B B. Adv Mater Processes, 1996; 150(4): 33
[2] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37
[3] Polmear I J. Mater Sci Technol, 1994; 10: 1
[4] Chen Z H, Xia W J, Yan H G, Fu D F, Chen J H. Chem Ind Eng Progress, 2004; 23: 127
(陈振华, 夏伟军, 严红革, 傅定发, 陈吉华. 化工进展, 2004; 23: 127)

[5] Yu K, Li W X, Wang R C, Ma Z Q. Chin J Nonferrous Met, 2003; 13: 277
(余琨, 黎文献, 王日初, 马正青. 中国有色金属学报, 2003; 13: 277)

[6] Lin Q Q, Zhang H, Peng D S, Lin G Y, Wang Z Q. Nat Sci J Xiangtan Univ, 2002; 24: 84
(林启权, 张 辉, 彭大暑, 林高用, 王振球. 湘潭大学自然科学学报, 2002; 24: 84)

[7] Frost H J, Ashby M F. Deformation Mechanism Maps. Oxford: Pergamon Press, 1982: 40
[8] Galiyev A, Sitdikov O, Kaibyshev R. Mater Trans, 2003; 44: 426
[9] McQueen H J. Metall Mater Trans, 2002; 33A: 345
[10] Takuda H, Fujimoto H, Hatta N. J Mater Process Technol, 1998; 80–81: 513
[11] Takuda H, Morishita T, Kinoshita T, Shirakawa N. J Mater Process Technol, 2005; 164–165: 1258
[12] Zhou H T, Zeng X Q, Wang Q D, Ding W J. Acta Metall Sin (Engl Lett), 2004; 17: 155
[13] Wang L Y, Fan Y G, Hang G J. Trans Nonferrous Met Soc China, 2003; 13: 335
[14] Zhang Y, Ma C J, Lu C. Light Alloy Fabr Technol, 2003; 31(7): 35
(张娅, 马春江, 卢晨. 轻合金加工技术, 2003; 31(7): 35)

[15] Chen Z H, Xu F Y, Fu D F, Xia W J. Chem Ind Eng Progress, 2006; 25: 140
(陈振华, 许方艳, 傅定发, 夏伟军. 化工进展, 2006; 25: 140)

[16] Zener C, Hollomon J H. J Appl Phys, 1944; 15: 22
[17] Jonas J J, Sellars C M, Tegart M W J. Int Mater Rev, 1969; 14: 1
[18] Liu J, Cui Z S, Li C X. Comput Mater Sci, 2008; 41: 375
[19] Ryan N D, McQueen H J. J Mater Process Technol, 1990; 21: 177
[20] Sheng Z Q, Shivpuri R. Mater Sci Eng, 2006; A419: 202

[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[4] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[5] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[6] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[7] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[8] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[9] LIU Chao, YAO Zhihao, JIANG He, DONG Jianxin. The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains[J]. 金属学报, 2021, 57(10): 1309-1319.
[10] ZHOU Li, LI Ming, WANG Quanzhao, CUI Chao, XIAO Bolv, MA Zongyi. Study of the Hot Deformation and Processing Map of 31%B4Cp/6061Al Composites[J]. 金属学报, 2020, 56(8): 1155-1164.
[11] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[12] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[13] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[14] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
[15] Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. 金属学报, 2019, 55(6): 709-719.
No Suggested Reading articles found!