Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (5): 536-540    DOI:
论文 Current Issue | Archive | Adv Search |
EFFECT OF SULFATE–REDUCING BACTERIA ON THE PITTING CORROSION BEHAVIOR OF 18–8 STAINLESS STEEL
LI Fushao1; AN Maozhong1; LIU Guangzhou2; DUAN Dongxia2
1.School of Chemical Engineering; Harbin Institute of Technology; Harbin 150001
2.State Key Laboratory for Marine Corrosion and Protection; Qingdao 266071
Cite this article: 

LI Fushao AN Maozhong LIU Guangzhou DUAN Dongxia. EFFECT OF SULFATE–REDUCING BACTERIA ON THE PITTING CORROSION BEHAVIOR OF 18–8 STAINLESS STEEL. Acta Metall Sin, 2009, 45(5): 536-540.

Download:  PDF(562KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Pitting corrosion of stainless steels is a very complex process in the chloride–containing media with sulfate–reducing bacteria (SRB). Sulfate reduction by SRB results in the production of sulfur–containing species, which can significantly change the media state and ultimately affect both the pit–initiation (breakdown of passive film) and the pit–growth. In the present study, the effect of SRB on the pitting corrosion behavior of 18–8 stainless steel (18–8SS) in seawater was investigated by atomic force microscopy (AFM) and electrochemical methods. As the results show, 18–8SS can be quickly activated in the media with SRB, indicating that bacterial activities can accelerate greatly the process of breakdown of passive film; Measurements with AFM probe demonstrate that the rate of micropit growth of 18–8SS in the media with SRB is conspicuously higher than that in the sterilized media. As for the pitting corrosion mechanism, bacterial metabolites make the pit potential (Epit) and the repassivation potential (Erep) both decrease distinctly; However, Epit of 18–8SS is still more positive than the redox potential (Eh) of the media state, Erep of 18–8SS more positive than the reversible hydrogen electrode potential, and thus it is proposed that the localized free oxygen resulting from sulfidation of passive film in the media with SRB is the main factor which causes the breakdown of passive film; Subsequently, sulfur element or polysulfide in the media with SRB is the main factor which sustains the pit–growth, and the current density for cathodic reduction of sulfur element or polysulfide can reach to a very high level (>10 μA/cm2).

Key words:  sulfate–reducing bacteria      pitting corrosion      atomic force microscopy      anodic cyclic polarization      XPS analyse     
Received:  28 April 2008     
ZTFLH: 

TG174.3

 
Fund: 

Supported by Foundation of Qingdao Municipal Science \& Technology Commission (No. YK010403)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I5/536

[1] Newman R C, Webster B J, Kelly R G. ISIJ Int, 1991; 31:201
[2] Webster B J, Newman R C. Corros Sci, 1993; 35: 675
[3] Duan J Z, Hou B R, Yu Z G. Mater Sci Eng, 2006; C26:624
[4] Dominique T, Wolfgang S. In: Marcus P, Oudar J eds.,Corrosion Mechanisms in Theory and Practice, New York:Marcel Dekker Inc, 1995: 457
[5] van Ommen K F, Bryant R D, Laishley E J. Anaerobe, 1995; 1: 351
[6] Silva S D, Basseguy R, Bergel A. J Electroanal Chem,2004; 561: 93
[7] Dinh H T, Kuever J, Mubmann M, Hassel A W, Stratmann M, Widdel F. Nature, 2004; 427: 829
[8] King R A, Miller J D A. Nature, 1971; 233: 491
[9] Costello J A. S Afr J Sci, 1974; 70: 202
[10] Schaschl E. Mater Performance, 1980; 19: 9
[11] Silva S D, Basseguy R, Bergel A. Electrochim Acta, 2004;49: 4553
[12] Landoulsi J, Elkirat K, Richard C, Feron D, Pulvin S. Environ Sci Technol, 2008; 42: 2233
[13] Liu J H, Liang X, Li S M. Acta Metall Sin, 2005; 41: 545
(刘建华, 梁 馨, 李松梅. 金属学报, 2005; 41: 545)
[14] Cheng Q H, Wu Q S, Yu J F. China Guide to Grade of Iron and Steels. Beijing: Chinese Standard Press, 1994:515
(陈庆恒, 伍千思, 于吉福. 中国钢铁材料牌号手册. 北京: 中国标准出版社, 1994: 515)
[15] Postgate J R. The Sulfate Reducing Bacteria. 2nd ed, Cambridge: Cambridge University Press, 1984: 208
[16] Shibata T, Takeyama T. Corrosion, 1977; 33: 2431
[17] Chamriski I G, Burns G R, Webster B J, Laycock N J.Corrosion, 2004; 60: 658
[18] Marcus P, Oudar J. In: McCafferty E, Clayton C R, Oudar J eds., Fundamental Aspects of Corrosion Protection by Surface Modification, Pennington, NJ: The Electrochemi-
cal Society, 1984: 173
[19] Marcus P, Teissier A, Oudar J. Surf Sci, 11983; 29: 432
[20] Marcus P, Teissier A, Oudar J. Corros Sci, 1984; 24: 259
[21] Chen G, Clayton C R. J Electrochem Soc, 1997; 144: 3140
[22] Iverson W P. Science, 1967; 156: 1112
[23] Wagner C D, Riggs W M, Davis L E, Moulder J F. Hand Book of X–ray Photoelectron Spectroscopy. Eden Prairie, MN: Perkin Elmer Corporation Physical Electronics, 1979: 235

[1] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[2] SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. 金属学报, 2022, 58(7): 895-904.
[3] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[4] LV Chenxi, SUN Yangting, CHEN Bin, JIANG Yiming, LI Jin. Influence of Potentionstatic Pulse Technique on Pitting Behavior and Pitting Resistance of 317L Stainless Steel[J]. 金属学报, 2021, 57(12): 1607-1613.
[5] Kaiqiang LI, Lujia YANG, Yunze XU, Xiaona WANG, Yi HUANG. Influence of SO42- on the Corrosion Behavior of Q235B Steel Bar in Simulated Pore Solution[J]. 金属学报, 2019, 55(4): 457-468.
[6] FENG Hao,LI Huabing,LU Pengchong,YANG Chuntian,JIANG Zhouhua,WU Xiaolei. Investigation on Microbiologically Influenced Corrosion Behavior of CrCoNi Medium-Entropy Alloy byPseudomonas Aeruginosa[J]. 金属学报, 2019, 55(11): 1457-1468.
[7] Nan PIAO,Ji CHEN,Chengjiang YIN,Cheng SUN,Xinghang ZHANG,Zhanwen WU. INVESTIGATION ON PITTING CORROSION BEHAVIOR OF ULTRAFINE-GRAINED 304L STAINLESS STEEL IN Cl- CONTAINING SOLUTION[J]. 金属学报, 2015, 51(9): 1077-1084.
[8] Haiwei HUANG, Zhenbo WANG, Li LIU, Xingping YONG, Ke LU. FORMATION OF A GRADIENT NANOSTRUCTURED SURFACE LAYER ON A MARTENSITIC STAINLESS STEEL AND ITS EFFECTS ON THE ELECTRO- CHEMICAL CORROSION BEHAVIOR[J]. 金属学报, 2015, 51(5): 513-518.
[9] XIN Sensen, LI Moucheng, SHEN Jianian. EFFECT OF TEMPERATURE AND CONCENTRATION RATIO ON PITTING RESISTANCE OF 316L STAINLESS STEEL IN SEAWATER[J]. 金属学报, 2014, 50(3): 373-378.
[10] WANG Binbin, WANG Zhenyao, CAO Gongwang, LIU Yanjie, KE Wei. LOCALIZED CORROSION OF ALUMINUM ALLOY 2024 EXPOSED TO SALT LAKE ATMOSPHERIC ENVIRONMENT IN WESTERN CHINA[J]. 金属学报, 2014, 50(1): 49-56.
[11] SUN Feilong, LI Xiaogang, LU Lin, CHENG Xuequn, DONG Chaofang, GAO Jin. CORROSION BEHAVIOR OF 5052 AND 6061 ALUMINUM ALLOYS IN DEEP OCEAN ENVIRONMENT OF SOUTH CHINA SEA[J]. 金属学报, 2013, 49(10): 1219-1226.
[12] WEI Xin, DONG Junhua, TONG Jian, ZHENG Zhi,KE Wei. INFLUENCE OF TEMPERATURE ON PITTING CORROSION RESISTANCE OF Cr26Mo1 ULTRA PURE HIGH CHROMIUM FERRITE STAINLESS STEEL IN 3.5%NaCl SOLUTION[J]. 金属学报, 2012, 48(4): 502-507.
[13] GUO Lifang LI Xuyan SUN Tao XU Juliang LI Jin JIANG Yiming . THE INFLUENCE OF SENSITIVE TEMPERATURE ON THE LOCALIZED CORROSION RESISTANCE OF DUPLEX STAINLESS STEEL SAF2304[J]. 金属学报, 2012, 48(12): 1503-1509.
[14] ZHOU Binghai ZHAI Ziqing. STOCHASTIC PROCESS-BASED MODELING METHOD FOR PITTING CORRSION OF Ni-BASED ALLOY 690[J]. 金属学报, 2011, 47(9): 1159-1166.
[15] SHI Jinjie SUN Wei GENG Guoqing. CORROSION RESISTANCES OF PASSIVE FILMS ON LOW-CARBON REBAR AND FINE-GRAINED REBAR IN ALKALINE MEDIA[J]. 金属学报, 2011, 47(4): 449-454.
No Suggested Reading articles found!