Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (2): 143-150    DOI:
论文 Current Issue | Archive | Adv Search |
INVESTIGATION ON ANISOTROPY OF DYNAMIC COMPRESSIVE MECHANICAL PROPERTIES OF COLD--ROLLED Cu SHEET
CHEN Zhiyong1; CAI Hongnian2; WANG Fuchi2; TAN Chengwen2; ZHAN Congkun1; LIU Chuming1
1. School of Materials Science and Engineering; Central South University; Changsha 410083
2. School of Materials Science and Engineering; Beijing Institute of Technology; Beijing 100081
Cite this article: 

CHEN Zhiyong CAI Hongnian WANG Fuchi TAN Chengwen ZHAN Congkun LIU Chuming. INVESTIGATION ON ANISOTROPY OF DYNAMIC COMPRESSIVE MECHANICAL PROPERTIES OF COLD--ROLLED Cu SHEET. Acta Metall Sin, 2009, 45(2): 143-150.

Download:  PDF(2406KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The quasi–static and dynamic compressive mechanical properties of cold–rolled and annealed Cu sheets were investigated by means of Instron apparatus and Split–Hopkinson pressure bar (SHPB) technology, respectively. Cylindrical specimens of textured Cu sheets, which were cut with the
cylinder axes along the rolling direction (RD), transverse direction (TD) and normal direction (ND), were compressed at strain rates in the range of 10−3 to 103 s−1. The compressive stress-strain curves show all that the flow stresses for both cold rolled and annealed Cu sheets increase with the increase of strain rate and the obvious effect of strain rate hardening has been observed. The quasi–static and dynamic compressive mechanical properties of the cold rolled Cu sheet exhibit pronounced anisotropy, both the yield strength and flow stresses at the low deformation degree for the TD direction are the maximum, while those for the RD direction are the minimum. The properties of annealed Cu sheet are isotropic. Taking into account of possible mechanism for quasi–static and dynamic plastic deformation, the mechanical anisotropy of textured Cu sheets could be explained qualitatively by Taylor model based on the microscopic crystal plasticity theory.

Key words:  cold--rolled Cu sheet      texture      dynamic compressive mechanical property      anisotropy     
Received:  24 June 2008     
ZTFLH: 

TG146

 
  TG113

 
Fund: 

Supported by National Natural Science Foundation of China (No.50871125) and China Postdoctoral Science Foundation (No.2005037003)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I2/143

[1] Glenn T, Bradley W. Metall Trans, 1973; 4A: 2343
[2] Tang N Y, Niessen P, Pick R J, Worswick M J. Mater Sci Eng, 1991; A131: 153
[3] Andrade U R, Meyers M A, Chokshi A H. Scr Metall Mater, 1994; 30: 933
[4] Sanchez J C, Murr L E, Staudhammer K P. Acta Mater, 1997; 45: 3223
[5] Kiritani M, Satoh Y, Kizuka Y, Arakawa K, Ogasawara Y, Arai S, Shimomura Y. Philos Mag Lett, 1999; 79: 797
[6] Jia D, Ramesh K T, Ma E, Lu L, Lu K. Scr Mater, 2001; 45: 613
[7] Stevenson M E, Jones S E, Bradt R C. Mater Sci Res Int, 2003; 9: 187
[8] Gourdin W H, Lassila D H. Acta Metall Mater, 1991; 39: 2337
[9] Gourdin W H, Lassila D H. Mater Sci Eng, 1992; A151: 11
[10] Meyers M A, Andrade U R, Chokshi A R. Metall Mater Trans, 1995; 26A: 2881
[11] Nemat–Nasser S, Li Y L. Acta Mater, 1998; 46: 565
[12] Wang L L. Foundation of Stress Waves. Beijing: National Defense Industry Press, 2005: 52
(王礼立. 应力波基础. 北京: 国防工业出版社, 2005: 52)
[13] Bunge H J. Texture Analysis in Materials Science—Mathematical Methods. London: Butterworths, 1982: 47
[14] Klepaczko J R. J Phys Colloque, 1988; 49: 553
[15] Follansbee P S, Kocks U F. Acta Metall, 1988; 36: 81
[16] Tong W, Clifton R J, Huang S. J Mech Phys Solids, 1992;40: 1251
[17] Chin G Y, Mendorf D R, Hosford W F. Proc Roy Soc,1969; 309A: 433
[18] Hirsch J, LÜcke K, Hatherly M. Acta Metall, 1988; 36:2905
[19] El–Danaf E, Kalidindi S R, Doherty R D. Int J Plast,2001; 17: 1245
[20] Szczerba M S, Bajor T, Tokarski T. Philos Mag, 2004; 84:481
[21] Chen Z Y, Zhang X M, Liu C M, Zhou Z P, Li S Y. J Mater Sci, 2002; 37: 2843
[22] Sachs E. Z Ver Deut Ing, 1928; 72: 734
[23] Taylor G I. J Inst Met, 1938; 62: 307

[24] Van Houtte P. In: Nagashima S ed., Proc 6th Int Conf on Textures of Materials. Tokyo: Iron and Steel Institute of Japan, 1981: 428
[25] Fortunier R, Driver J H. Acta Metall, 1987; 35: 509
[26] Mao W M. Mater Sci Eng, 1998; A257: 171
[27] Bishop J F W, Hill R. Philos Mag, 1951; 42: 414
[28] Bishop J F W, Hill R. Philos Mag, 1951; 42: 1298
[29] Chen Z Y, Cai H N, Zhang X M, Wang F C, Tan C W. Sci China, 2006; 49E: 521

[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[3] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] GE Jinguo, LU Zhao, HE Siliang, SUN Yan, YIN Shuo. Anisotropy in Microstructures and Mechanical Properties of 2Cr13 Alloy Produced by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(1): 157-168.
[5] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
[6] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[7] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[8] WANG Di, HUANG Jinhui, TAN Chaolin, YANG Yongqiang. Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing[J]. 金属学报, 2022, 58(10): 1221-1235.
[9] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[10] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[11] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[12] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[13] BI Sheng, LI Zechen, SUN Haixia, SONG Baoyong, LIU Zhenyu, XIAO Bolv, MA Zongyi. Microstructure and Mechanical Properties of Carbon Nanotubes-Reinforced 7055Al Composites Fabricated by High-Energy Ball Milling and Powder Metallurgy Processing[J]. 金属学报, 2021, 57(1): 71-81.
[14] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[15] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
No Suggested Reading articles found!