|
|
MOLECULAR DYNAMICS SIMULATION OF PLASTIC BEHAVIOR OF THE Ni NANOFILM DURING SCRATCH PROCESS |
LIU Xiaoming; YOU Xiaochuan; LIU Zhanli; NIE Junfeng; ZHUANG Zhuo |
School of Aerospace; Tsinghua University; Beijing 100084 |
|
Cite this article:
LIU Xiaoming YOU Xiaochuan LIU Zhanli NIE Junfeng ZHUANG Zhuo. MOLECULAR DYNAMICS SIMULATION OF PLASTIC BEHAVIOR OF THE Ni NANOFILM DURING SCRATCH PROCESS. Acta Metall Sin, 2009, 45(2): 137-142.
|
Abstract The nanoscrath process of nickel nanofilm and plastic deformation mechanisms in the nanofilm are investigated by using molecular dynamics simulation. The results reveal that the stacking faults end at the grain boundaries as well as prismatic dislocation loops, leading to that plastic deformation on the grain boundary keeps in the film rather than transmiting downward the substrate. For thinner films, stacking faults are preferred in the scratch process, which increase storage capacity of plastic deformation in the film, and further inhibit the stick–slip amplitude in the friction oscillation process. For thicker films, dislocation loops, which glide along slip plane downward to the grain boundary, dominate over the stacking faults, and finally dissipate on the grain boundaries. Since the intergrain stacking faults are inactive in thicker films, the stick–slip phenomenon is similar to that in single crystal. The evolutions of subsurface microstructures in the nanoscratch process result from the dislocation structures emitted in nanofilms with different thickness.
|
Received: 11 June 2008
|
|
Fund: Supported by National Natural Science Foundation of China (No. 10772096) and China Postdoctoral Science Foundation (No. 20070420373) |
[1] Gerberich W, Mook W. Nat Mater, 2005; 4: 577
[2] Guo Y, Zhuang Z, Li X Y, Chen Z. Int J Solids Struct, 2007; 44: 1180
[3] Luan B Q, Robbins M O. Nature, 2005; 435: 929
[4] Van Swygenhoven H, Derlet P M, Frøseth A G. Nat Mater,2004; 3: 399
[5] Ma X L, Yang W. Nanotechnology, 2003; 14: 1208
[6] Lilleodden E T, Zimmerman J A, Foiles S M, Nix W D. J Mech Phys Solids, 2003; 51: 901
[7] Wang H L, Wang X X, Wang Y, Liang H Y. Acta Metall Sin, 2007; 43: 259
(王海龙, 王秀喜, 王宇, 梁海弋. 金属学报,, 2007; 43: 259)
[8] Fang T H, Wu J H. Comput Mater Sci, 2008; 43: 785
[9] Denis S, Ronald E M. Acta Mater, 2006; 54: 33
[10] Kim K J, Yoon J H, Cho M H, Jang H. Mater Lett, 2006; 60: 3367
[11] Jang H, Farkas D. Mater Lett, 2007; 61: 868
[12] Cheng D, Yan Z J, Yan L. Thin Solid Films, 2007; 515:3698
[13] Mishin Y, Farkas D, Mehl M J, Papaconstantopoulos D A. Phys Rev, 1999; 59B: 393
[14] Fang T H, Weng C I. Nanotechnology, 2000; 11: 148
[15] Berendsen H J, Postma J P M, Gunsteren W V, Dinola A. J Chem Phys, 1984; 81: 3684
[16] Li J, Van Vliet K J, Zhu T, Yip S, Suresh S. Nature, 2002; 418: 307
[17] Lee Y, Park J Y, Kim S Y, Jun S, Im S. Mech Mater,2005; 37: 1035
[18] Honeycutt J D, Andersen H C. J Phys Chem, 1987; 91:4950
[19] HumphreyW, Dalke A, Schulten K. J Mol Graphics, 1996;14: 33
[20] Mulliah D, Kenny S D, Smith R. Phys Rev, 2004; 69B:205407
[21] Pei Q X, Lu C, Lee H P. Comput Mater Sci, 2007; 41: 177
[22] Li B, Clapp P C, Rifkin J A, Zhang X M. J Appl Phys,2001; 90: 3090
[23] Li M, Chu W Y, Gao K W, Su Y J, Qiao L J. Acta Metall Sin, 2004; 40: 449
(李明, 褚武扬, 高克玮, 宿彦京, 乔利杰. 金属学报, 2004; 40: 449)
[24] Cho M H, Kim S J, Lim D S, Jang H. Wear, 2005; 259:1392
[25] Guo J, Lu Q, Lu L. Acta Metall Sin, 2006; 42: 903
(郭金宇, 卢秋虹, 卢磊. 金属学报, 2006; 42: 903) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|