Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (2): 137-142    DOI:
论文 Current Issue | Archive | Adv Search |
MOLECULAR DYNAMICS SIMULATION OF PLASTIC BEHAVIOR OF THE Ni NANOFILM DURING SCRATCH PROCESS
LIU Xiaoming; YOU Xiaochuan; LIU Zhanli; NIE Junfeng; ZHUANG Zhuo
School of Aerospace; Tsinghua University; Beijing 100084
Cite this article: 

LIU Xiaoming YOU Xiaochuan LIU Zhanli NIE Junfeng ZHUANG Zhuo. MOLECULAR DYNAMICS SIMULATION OF PLASTIC BEHAVIOR OF THE Ni NANOFILM DURING SCRATCH PROCESS. Acta Metall Sin, 2009, 45(2): 137-142.

Download:  PDF(8291KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The nanoscrath process of nickel nanofilm and plastic deformation mechanisms in the nanofilm are investigated by using molecular dynamics simulation. The results reveal that the stacking faults end at the grain boundaries as well as prismatic dislocation loops, leading to that plastic deformation on the grain boundary keeps in the film rather than transmiting downward the substrate. For thinner films, stacking faults are preferred in the scratch process, which increase storage capacity of plastic deformation in the film, and further inhibit the stick–slip amplitude in the friction oscillation process. For thicker films, dislocation loops, which glide along slip plane downward to the grain boundary, dominate over the stacking faults, and finally dissipate on the grain boundaries. Since the intergrain stacking faults are inactive in thicker films, the stick–slip phenomenon is similar to that in single crystal. The evolutions of subsurface microstructures in the nanoscratch process result from the dislocation structures emitted in nanofilms with different thickness.

Key words:  friction      molecular dynamics simulation      nanofilm      grain boundary      dislocation     
Received:  11 June 2008     
ZTFLH: 

TG146.1

 
Fund: 

Supported by National Natural Science Foundation of China (No. 10772096) and China Postdoctoral Science Foundation (No. 20070420373)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I2/137

[1] Gerberich W, Mook W. Nat Mater, 2005; 4: 577
[2] Guo Y, Zhuang Z, Li X Y, Chen Z. Int J Solids Struct, 2007; 44: 1180
[3] Luan B Q, Robbins M O. Nature, 2005; 435: 929
[4] Van Swygenhoven H, Derlet P M, Frøseth A G. Nat Mater,2004; 3: 399
[5] Ma X L, Yang W. Nanotechnology, 2003; 14: 1208
[6] Lilleodden E T, Zimmerman J A, Foiles S M, Nix W D. J Mech Phys Solids, 2003; 51: 901
[7] Wang H L, Wang X X, Wang Y, Liang H Y. Acta Metall Sin, 2007; 43: 259
(王海龙, 王秀喜, 王宇, 梁海弋. 金属学报,, 2007; 43: 259)
[8] Fang T H, Wu J H. Comput Mater Sci, 2008; 43: 785
[9] Denis S, Ronald E M. Acta Mater, 2006; 54: 33
[10] Kim K J, Yoon J H, Cho M H, Jang H. Mater Lett, 2006; 60: 3367
[11] Jang H, Farkas D. Mater Lett, 2007; 61: 868
[12] Cheng D, Yan Z J, Yan L. Thin Solid Films, 2007; 515:3698
[13] Mishin Y, Farkas D, Mehl M J, Papaconstantopoulos D A. Phys Rev, 1999; 59B: 393
[14] Fang T H, Weng C I. Nanotechnology, 2000; 11: 148
[15] Berendsen H J, Postma J P M, Gunsteren W V, Dinola A. J Chem Phys, 1984; 81: 3684
[16] Li J, Van Vliet K J, Zhu T, Yip S, Suresh S. Nature, 2002; 418: 307
[17] Lee Y, Park J Y, Kim S Y, Jun S, Im S. Mech Mater,2005; 37: 1035
[18] Honeycutt J D, Andersen H C. J Phys Chem, 1987; 91:4950
[19] HumphreyW, Dalke A, Schulten K. J Mol Graphics, 1996;14: 33
[20] Mulliah D, Kenny S D, Smith R. Phys Rev, 2004; 69B:205407
[21] Pei Q X, Lu C, Lee H P. Comput Mater Sci, 2007; 41: 177
[22] Li B, Clapp P C, Rifkin J A, Zhang X M. J Appl Phys,2001; 90: 3090
[23] Li M, Chu W Y, Gao K W, Su Y J, Qiao L J. Acta Metall Sin, 2004; 40: 449
(李明, 褚武扬, 高克玮, 宿彦京, 乔利杰. 金属学报, 2004; 40: 449)
[24] Cho M H, Kim S J, Lim D S, Jang H. Wear, 2005; 259:1392
[25] Guo J, Lu Q, Lu L. Acta Metall Sin, 2006; 42: 903
(郭金宇, 卢秋虹, 卢磊. 金属学报, 2006; 42: 903)

[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[5] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[6] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[7] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[8] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[9] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[10] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[11] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[12] LI Huizhao, WANG Caimei, ZHANG Hua, ZHANG Jianjun, HE Peng, SHAO Minghao, ZHU Xiaoteng, FU Yiqin. Research Progress of Friction Stir Additive Manufacturing Technology[J]. 金属学报, 2023, 59(1): 106-124.
[13] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[14] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[15] WANG Jiangwei, CHEN Yingbin, ZHU Qi, HONG Zhe, ZHANG Ze. Grain Boundary Dominated Plasticity in Metallic Materials[J]. 金属学报, 2022, 58(6): 726-745.
No Suggested Reading articles found!