HOT DEFORMATION BEHAVIOR OF GH761 WROUGHT Ni BASE SUPERALLOY
ZHAO Meilan; SUN Wenru; YANG Shulin; QI Feng; GUO Shouren; HU Zhuangqi
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Cite this article:
ZHAO Meilan SUN Wenru YANG Shulin QI Feng GUO Shouren HU Zhuangqi. HOT DEFORMATION BEHAVIOR OF GH761 WROUGHT Ni BASE SUPERALLOY. Acta Metall Sin, 2009, 45(1): 79-83.
The flow stress-strain behavior of GH761 alloy was investigated via hot compression testing. The peak stress σp, starting steady--state stress σs, and corresponding strain εp, εs decrease with decreasing strain rate ε at constant temperature. At constant strain rate, σp, σs and εs drop with rising temperature, but εp does not change obviously. On the basis of reducing original grain size, lowering deformed temperature and enhancing strain rate can well refine structure. The microstructure will be most homogenous and finest when the strain reaches the level that DRX is finished exactly. Further increasing the strain will promote the grain growth. The hot deformation constitutive equation obtained is as follows: ε=6.5×106σp4.86exp(-461×103/RT).
[1] Wang L A. Manufacturing Engineering for Hard Wrought Alloy Forgings. Beijing: National Defence Industry Press, 2005: 28
(王乐安. 难变形合金锻件生产技术. 北京: 国防工业出版社, 2005: 28)
[2] Li C G, Zeng F C. Aeronaut Sci Technol, 1996; (5): 32
(李成功, 曾凡昌. 航空科学技术, 1996; (5): 32)
[3] Li Q, Han Y F, Xiao C B, Song J X. Mater Rev, 2004; 18(4): 9
(李青, 韩雅芳, 肖程波, 宋尽霞. 材料导报, 2004; 18(4): 3)
[4] Wang S Y, Li H Q, Li H Z, Ji C, Cui J. Chin J Rare Met, 2003; 27: 452
(王淑云, 李惠曲, 李辉中, 计晟, 崔健. 稀有金属, 2003; 27: 452)
[5] Long Z D, Ma P L, Zhong Z Y. J Iron Steel Res, 1996; 8(2): 31
(龙正东, 马培力, 仲增墉. 钢铁研究学报, 1996; 8(2): 31)
[6] Ducki K J, Rodak K, Hetma´nczyk M, Kuc D. Mater Chem Phys, 2003; 81: 493
[7] Park N K, Kim I S, Na Y S, Yeom J T. J Mater Process Technol, 2001; 111: 98
[8] Ha T K, Jung J Y. Mater Sci Eng, 2007; A449–451: 139
[9] Hardwick D, McTegart W J. J Inst Met, 1961–62; 90: 17
[10] Yuan H, Liu W C. Mater Sci Eng, 2005; A408: 281
[11] Kupka M, Prewendowski M. J Alloys Compd, 2007; 437: 367
[12] Lyszkowski R, Bystrzycki J. Intermetallics, 2006; 14: 1231
[13] Imayev R, Evangelista E, Tassa O, Stobrawa J. Mater Sci Eng, 1995; A202: 128
[14] Zhou L X, Baker T N. Mater Sci Eng, 1995; A196: 89
[15] Zhou L X, Baker T N. Mater Sci Eng, 1994; A177: 1
[16] Roberts W, Boden H, Ahlblom B. Met Sci, 1979; 13: 195
[17] Sellars C M, McTegart W J. Acta Metall, 1966; 14: 1136
[18] McQueen H J, Ryan N D. Mater Sci Eng, 2002; A322: 43
[19] Medeiros S C, Prasad Y V R K, Frazier W G, Srinivasan R. Mater Sci Eng, 2000; A293: 198