Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (1): 79-83    DOI:
论文 Current Issue | Archive | Adv Search |
HOT DEFORMATION BEHAVIOR OF GH761 WROUGHT Ni BASE SUPERALLOY
ZHAO Meilan; SUN Wenru; YANG Shulin; QI Feng; GUO Shouren; HU Zhuangqi
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

ZHAO Meilan SUN Wenru YANG Shulin QI Feng GUO Shouren HU Zhuangqi. HOT DEFORMATION BEHAVIOR OF GH761 WROUGHT Ni BASE SUPERALLOY. Acta Metall Sin, 2009, 45(1): 79-83.

Download:  PDF(813KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The flow stress-strain behavior of GH761 alloy was investigated via hot compression testing. The peak stress σp, starting steady--state stress σs, and corresponding strain εp, εs decrease with decreasing strain rate ε at constant temperature. At constant strain rate, σpσs and εs drop with rising temperature, but εp does not change obviously. On the basis of reducing original grain size, lowering deformed temperature and enhancing strain rate can well refine structure. The microstructure will be most homogenous and finest when the strain reaches the level that DRX is finished exactly. Further increasing the strain will promote the grain growth. The hot deformation constitutive equation obtained is as follows: ε=6.5×106σp4.86exp(-461×103/RT).

Key words:  GH761      wrought superalloy      hot deformation      microstructure evolution      dynamic recrystallization     
Received:  22 February 2008     
ZTFLH: 

TG146.1

 
  TG113.2

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I1/79

[1] Wang L A. Manufacturing Engineering for Hard Wrought Alloy Forgings. Beijing: National Defence Industry Press, 2005: 28
(王乐安. 难变形合金锻件生产技术. 北京: 国防工业出版社, 2005: 28)
[2] Li C G, Zeng F C. Aeronaut Sci Technol, 1996; (5): 32
(李成功, 曾凡昌. 航空科学技术, 1996; (5): 32)
[3] Li Q, Han Y F, Xiao C B, Song J X. Mater Rev, 2004; 18(4): 9
(李青, 韩雅芳, 肖程波, 宋尽霞. 材料导报, 2004; 18(4): 3)
[4] Wang S Y, Li H Q, Li H Z, Ji C, Cui J. Chin J Rare Met, 2003; 27: 452
(王淑云, 李惠曲, 李辉中, 计晟, 崔健. 稀有金属, 2003; 27: 452)
[5] Long Z D, Ma P L, Zhong Z Y. J Iron Steel Res, 1996; 8(2): 31
(龙正东, 马培力, 仲增墉. 钢铁研究学报, 1996; 8(2): 31)
[6] Ducki K J, Rodak K, Hetma´nczyk M, Kuc D. Mater Chem Phys, 2003; 81: 493
[7] Park N K, Kim I S, Na Y S, Yeom J T. J Mater Process Technol, 2001; 111: 98
[8] Ha T K, Jung J Y. Mater Sci Eng, 2007; A449–451: 139
[9] Hardwick D, McTegart W J. J Inst Met, 1961–62; 90: 17
[10] Yuan H, Liu W C. Mater Sci Eng, 2005; A408: 281
[11] Kupka M, Prewendowski M. J Alloys Compd, 2007; 437: 367
[12] Lyszkowski R, Bystrzycki J. Intermetallics, 2006; 14: 1231
[13] Imayev R, Evangelista E, Tassa O, Stobrawa J. Mater Sci Eng, 1995; A202: 128
[14] Zhou L X, Baker T N. Mater Sci Eng, 1995; A196: 89
[15] Zhou L X, Baker T N. Mater Sci Eng, 1994; A177: 1
[16] Roberts W, Boden H, Ahlblom B. Met Sci, 1979; 13: 195
[17] Sellars C M, McTegart W J. Acta Metall, 1966; 14: 1136
[18] McQueen H J, Ryan N D. Mater Sci Eng, 2002; A322: 43
[19] Medeiros S C, Prasad Y V R K, Frazier W G, Srinivasan R. Mater Sci Eng, 2000; A293: 198

[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[5] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[7] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[8] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[9] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[10] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[11] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[12] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[13] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[14] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[15] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
No Suggested Reading articles found!