Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (2): 159-164     DOI:
Research Articles Current Issue | Archive | Adv Search |
SOLIDIFICATION CHARACTERISTICS OF RAPIDLY SOLIDIFIED HIGH SPEED STEEL POWERS PRODUCED BY WATER ATOMIZATION
;;
哈尔滨工业大学材料科学与工程学院
Cite this article: 

. SOLIDIFICATION CHARACTERISTICS OF RAPIDLY SOLIDIFIED HIGH SPEED STEEL POWERS PRODUCED BY WATER ATOMIZATION. Acta Metall Sin, 2008, 44(2): 159-164 .

Download:  PDF(633KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The solidification characteristics of rapidly solidified M3/2 high speed steel powers produced by water atomization were investigated. The cooling rate of the powers was calculated to be 10^5~10^7K/s. In the size range of the atomized powders, the microstructure was found to exhibit an equiaxed crystal morphology, with carbides existing in continuous network between the crystal grains. The matrix of the HSS powders was principally austenite; as the particle size decreased, the matrix changed from austenite to austenite/ ferrite. The types of carbides were mainly cubic MC and close-packed hexagonal, M2C.
Key words:  rapid solidification      water atomization      high speed steel      solidification      
Received:  28 May 2007     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I2/159

[1]Flemings M C,Shiohara Y.Mater Sci Eng,1984;65:157
[2]Jones H.Mater Sci Eng,2001;A304-306:11
[3]Li Z B.Chin Tungsten Ind,2004;19(5):1 (李正邦.中国钨业,2004;19(5):1)
[4]Guo G C.Powder Metall Technol,2001;19:233 (郭庚辰.粉末冶金技术,2001;19:233)
[5]Prashant S,Mandal R K.Bull Mater Sci,2001;24:547
[6]Hu H Q.Metal Solidification Principle.Beijing:China Machine Press,2000:262 (胡汉起.金属凝固原理.北京:机械工业出版社,2000:262)
[7]Cheng T Y,Zhang S H.Rapidiy Solidification Technol- ogy and New-Style Alloys.Beijing:China Astronautic Publishing House,1990:103 (程天一,章守华.快速凝固技术与新型合金.北京:宇航出版社,1990:103)
[8]Guo A M,Cheng B T,Liu Z J,Huang J D.Shandong Metall,2002;24(3):47 (郭爱民,陈宝堂,刘忠杰,黄景东.山东冶金,2002;24(3):47)
[9]Lin B N,Wei Z J.Transmisson Principle of Liquid Metal Formation.Haebin:Haebin Institute of Technology Press,2000:359 (林柏年,魏尊杰.金属热态成形传输原理.哈尔滨:哈尔滨工业大学出版社,2000:359)
[10]Guo G C.Powder Metallurgy Materials Produced by Su- persolidous Liquid Phase Sintering.Beijing:Chemical Industry Press,2002:315 (郭庚辰.液相烧结粉末冶金材料.北京:化学工业出版社,2002:315)
[11]Pryds N H,Pedersen A S.Met Mater Trans,2002;A 33: 3755
[12]Sun J F,Shen J,Jia J,Li Q C.Chin J Nonferrous Met, 1999;9(sl):148 (孙剑飞,沈军,贾均,李庆春.中国有色金属学报,1999;9(s1):148)
[13]Huang K.Solid-State Physics.Beijing:Higher Education Press,2005:137 (黄昆.固体物理学.北京:高等教育出版社,2005:137)
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[4] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[5] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[6] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[8] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[9] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[10] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[11] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[12] ZHANG Lei, SHI Tao, HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. 金属学报, 2022, 58(2): 225-230.
[13] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[14] CAO Jianghai, HOU Zibing, GUO Zhongao, GUO Dongwei, TANG Ping. Effect of Superheat on Integral Morphology Characteristics of Solidification Structure and Permeability in Bearing Steel Billet[J]. 金属学报, 2021, 57(5): 586-594.
[15] XU Junfeng, ZHANG Baodong, Peter K Galenko. Model of Eutectic Transformation Involving Intermetallic Compound[J]. 金属学报, 2021, 57(10): 1320-1332.
No Suggested Reading articles found!