Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (2): 165-171     DOI:
Research Articles Current Issue | Archive | Adv Search |
Formation of Cu-rich Sphere Phase in Cu-80wt%Pb Hypermonotectic Alloys and the Effect of High Magnetic Field
Lin Zhang;;Xiaowei Zuo;Jicheng He
Cite this article: 

Lin Zhang; Xiaowei Zuo; Jicheng He. Formation of Cu-rich Sphere Phase in Cu-80wt%Pb Hypermonotectic Alloys and the Effect of High Magnetic Field. Acta Metall Sin, 2008, 44(2): 165-171 .

Download:  PDF(1009KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The solidification process of Cu-80wt%Pb hypermonotectic alloys was investigated in four different experiment conditions. The formation process and structure of Cu-rich sphere phase has been analyzed, and the influence of high magnetic field and cooling rate have been considered. The results show that the morphology of spherical Cu-rich phases mainly has three kinds of microstructure, that is the larger “net-shell type” and the smaller “egg-type” or “eye-type”. The cooling rate of the samples has great effect on both macrostructure and microstructure. As the cooling rate become slow, the Cu-rich phase changed from the fine sphere to the larger floating sphere and the finally coarse dendrite, and the thickness of Cu-shell and reticulum of Cu-Pb in Cu-rich sphere phase became coarser; The 12T high magnetic fields have a remarkably effect of restraining the gravity segregation of Cu-Pb alloy by preventing from the floating of larger Cu-rich droplets and sedimentation of Pb-matrix, so that a macrostructure and microstructure of Cu-Pb monotectic alloy similar to one under relative fast cooling rate is formed. And the 12T high magnetic field maybe has the effect to inhibit the transition of Cu solute both outside and inside of Cu-rich sphere phase, which inhibit the Cu-rich shell from becoming thicker, and the Cu-Pb “net-like” phase from coarsening.
Key words:  Monotectic alloy      Cu-Pb alloy      solidification      Cu-rich sphere phase      high magnetic field      
Received:  10 January 2007     

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I2/165

[1]Ratke L,Diefenbach S.Mater Sci Eng,1995;15R:263
[2]Kiessler G,Ratke L,Thieringer W K.Praktische Metal- lographie,1986;23:363
[3]Prinz B,Romero A,Ratke L.J Mater Sci,1995;30:4715
[4]Rathz T J,Robinson M B,Li D,Workman G L,Williams G.J Mater Sci,2001;36:1183
[5]Ojha S N,Chattopadhyay K.Trans Indian Inst Met,1978; 31:208
[6]Kamio A,Kumai S,Tezuka H.Mater Sci Eng,1991;A146: 105
[7]Grugel R N,Hellawell A.Metall Trans,1981;12A:669
[8]Dhindaw B K,Stefanescu D M,Singh A K,Curreri P A. Metall Trans,1988;19A:2839
[9]Aoi I,Makoto I,Yoshida M,Fukunaga H,Nakae H.J Cryst Growth,2001;222:806
[10]Zhao J Z.Acta Metall Sin,2002;38:525 (赵九洲.金属学报,2002;38:525)
[11]Liu Y,Guo J J,Jia J,Su Y Q,Ding H S.Acta Metall Sin, 2000;36:1233 (刘源,郭景杰,贾均,苏彦庆,丁宏升.金属学报,2000;36:1233)
[12]Zheng H X,Chen Z L,Guo X F.Chin J Nonferrous Met, 2001;11(S2):148 (郑红星,陈悼麟,郭学锋.中国有色金属学报,2001;11(S2):148)
[13]Yang S,Liang W X,Jia J.Foundry Technol,1999;(5):44 (杨森,梁文心,贾均.铸造技术,1999;(5):44)
[14]Yasuda H,Ohnaka I,Kawakami O,Ueno K,Kishio K. ISIJ Int,2003;43:942
[15]Yasuda H,Ohnaka I,Fujimoto S,Sugiyama A,Hayashi Y,Yamamoto M,Tsuchiyama A,Nakano T,Uesugi K, Kishio K.Mater Lett,2004;58:911
[16]Yasuda H,Ohnaka I,Fujimoto S,Takezawa N, Tsuchiyama A,Nakano T,Uesugi K.Scr Mater,2006; 54:527
[17]Wang E G,Zhang L,Liu C C,He J C.In:Chinese Ma- terials Research Society ed.,The New Pro9ress on Mate- rial Science and Engineer,Beijing:Metallurgical Industry Press,2005:1310 (王恩刚,张林,刘长春,赫冀成.见:中国材料研究学会主编,2004年材料科学与工程新进展,北京:冶金工业出版社,2005:1310)
[18]Dai G C,Chen M H.Chemical Hydromechanics.Beijing: Chemical Industry Press,1988:689 (戴干策,陈敏恒.化工流体力学.北京:化学工业出版社,1988:689)
[19]Chester W.J Fluid Mech,1957;3:304
[20]Reitz J R,Foldy L L.J Fluid Mech,1961;11:133
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[4] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[5] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[6] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[8] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[9] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[10] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[11] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[12] ZHANG Lei, SHI Tao, HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. 金属学报, 2022, 58(2): 225-230.
[13] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[14] CAO Jianghai, HOU Zibing, GUO Zhongao, GUO Dongwei, TANG Ping. Effect of Superheat on Integral Morphology Characteristics of Solidification Structure and Permeability in Bearing Steel Billet[J]. 金属学报, 2021, 57(5): 586-594.
[15] ZHANG Zhuang, LI Haiyang, ZHOU Lei, LIU Huasong, TANG Haiyan, ZHANG Jiaquan. As-Cast Spot Segregation of Gear Steel and Its Evolution in the Rolled Products[J]. 金属学报, 2021, 57(10): 1281-1290.
No Suggested Reading articles found!