Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (4): 379-384     DOI:
Research Articles Current Issue | Archive | Adv Search |
MOLECULAR DYNAMICS STUDY ON THE STRUCTURAL CHANGES OF COPPER NANOCLUSTERS BY HEATING
Song-Ning XU
东北大学博士生沈阳理工大学理学院
Cite this article: 

Song-Ning XU. MOLECULAR DYNAMICS STUDY ON THE STRUCTURAL CHANGES OF COPPER NANOCLUSTERS BY HEATING. Acta Metall Sin, 2007, 43(4): 379-384 .

Download:  PDF(1756KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Molecular dynamics simulation were used to study the variations of atom radial density distribution profilesρ(r) and internal energy per atom with temperatures for Cun(n=531,603,683) clusters. The studied cluster could be divided into four parts of surface layer and approximate surface layer, etc. according to the calculations ofρ(r). The simulated results show that parts of Cu603 cluster surface layer have been found in the state of disorder, while the rest of the cluster surface layer remains orderly when the temperature is around 770K. The coexistence of order and disorder has been lasting until the temperature of 1000K. The atomic structure of approximate surface layer and inner layer keeps in order as a whole between the temperature of 770K and 1000K. After variation of internal energy per atom with temperature undergo the shape of the letter N during 1000K-1100K, the atomic structure of individual parts of cluster has changed into disorderly at 1080K, but the radial direction of cluster appears layered distribution. The layered distribution of cluster disappears till the temperature of 1500K.
Key words:  copper cluster       molecular dynamics       canonical       structure changes      
Received:  23 August 2006     
ZTFLH:  TB115  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I4/379

[1]Wang G H.Cluster Physics.Shanghai:Shanghai Science and Technology Press,2003:6 (王广厚.团簇物理学.上海:上海科技出版社,2003:6)
[2]Kabir M,Mookerjee A,Bhattacharya A K.Phys Rev, 2004;69A:43203
[3]zcelik S,Güvenc Z B.Surf Sci,2003;532:312
[4]Rexer E F,Jellinek J,Krissinel E B.Parks E K,Riley S J.J Chem Phys,1992;117:82
[5]Stave M S,Depresto A E.J Chem Phys,1992:97:3386
[6]Kunz R E,Blaudeck P,Hoffmann K H.J Chem Phys, 1998;108:2576
[7]Gotwald D,Kahl G,Likos C N.J Chem Phys,2005;122: 204503
[8]Reinhard D,Hall B D,Ugarte D,Monot R.Phys Rev, 1997;55B:7868
[9]Link S,El-Sayed M A.Annu Rev Phys Chem,2003;54: 331
[10]Hofmamm S,Ducati C,Robertson J,Kleinsorge B.Appl Phys Lett,2003;83:135
[11]Boskovic B O,Stolojan V,Khan R U A,Haq S,Ravi S, Silca P.Nat Mater,2002:1:165
[12]Qi Y,Cagin T,Johnson W L,Goddard W A.J Chem Phys,2001;115:385
[13]Ding F,Bolton K,Rosen A.J Eur Phys,2005;34D:275
[14]Lewis L J.Pabli J,Barrat J L.Phys Rev,1997;56B:2248
[15]Peters K F,Cohen J B,Chung Y W.Phys Rev,1998;57B: 13430
[16]Mei J,Davenport J W.Fernado G W.Phys Rev,1991; 43B:4653
[17]Zhang L,Wang S Q,Ye H Q.Acta Phys Sin,2004;53: 249 (张林,王绍青,叶恒强.物理学报,2004;53:249)
[1] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[2] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[3] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[4] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[5] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[6] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[7] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[8] Junqin SHI,Kun SUN,Liang FANG,Shaofeng XU. Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment[J]. 金属学报, 2019, 55(8): 1034-1040.
[9] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[10] Jin WANG, Liming YU, Chong LI, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Different Temperatures on He Atoms Behavior inα-Fe with and without Dislocations[J]. 金属学报, 2019, 55(2): 274-280.
[11] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
[12] Haifeng ZHANG, Haile YAN, Nan JIA, Jianfeng JIN, Xiang ZHAO. Exploring Plastic Deformation Mechanism of MultilayeredCu/Ti Composites by Using Molecular Dynamics Modeling[J]. 金属学报, 2018, 54(9): 1333-1342.
[13] Pengyue ZHAO, Yongbo GUO, Qingshun BAI, Feihu ZHANG. Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures[J]. 金属学报, 2018, 54(7): 1051-1058.
[14] Dandan FAN, Junfeng XU, Yanan ZHONG, Zengyun JIAN. Effect of Superheated Temperature and Cooling Rate on the Solidification of Undercooled Ti Melt[J]. 金属学报, 2018, 54(6): 844-850.
[15] Jin WANG, Liming YU, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Crystal Orientation and He Density on Crack Propagation Behavior of bcc-Fe[J]. 金属学报, 2018, 54(1): 47-54.
No Suggested Reading articles found!