Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (12): 1238-1242     DOI:
Research Articles Current Issue | Archive | Adv Search |
Directional solidification of TiAl alloys using a polycrystalline seed
;;
西北工业大学
Cite this article: 

. Directional solidification of TiAl alloys using a polycrystalline seed. Acta Metall Sin, 2006, 42(12): 1238-1242 .

Download:  PDF(1246KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Directional solidification (DS) of Ti-46Al and Ti-43Al-3Si alloys using a polycrystalline seed material of Ti-43Al-3Si by self-made EMCS experimental apparatus with wide range of velocity has been studied. Successful DS ingots were obtained with fully lamellar microstructure parallel to longitudinal axis when the growth rates increased from 60 to 120mm/h. The ingot grown at 60mm/h exhibited typical lamellar microstructure aligned along the growth direction from the seed crystal up to the end part of ingot. On the contrary, as the growth rate increased, the orientation of lamellar microstructure changed beyond the transition point.
Key words:  Directional solidification      Lamellar microstructure      Seeding      TiAl      
Received:  24 February 2006     
ZTFLH:  TG132.32  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I12/1238

[1] Inui H, Kishida K, Misaki M, Kobayashi M, Shirai Y, Ya-maguchi M. Philos Mag, 1995; 72A: 1609
[2] Kim S E, Lee Y T, Oh M H, Inui H, Yamaguchi M. Mater Sci Eng, 2002; A329-331: 25
[3] Kim S E, Lee Y T, Oh M H, Inui H, Yamaguchi M. Inter-metallics, 2000; 8: 399
[4] Chen G L, Lin J P. Ordered Intermetallics Structural Material. Beijing: Metallurgical Industry Press, 1998: 736 (陈国梁,林均品.有序金属间化合物结构材料.北京:冶金工业出版社,1998:736)
[5] Yamaguchi M, Inui H. Structural Intermetallics. Warren-dale: TMS, 1993: 127
[6] Kim Y W. JOM, 1994; 46: 30
[7] Zheng X Q, Shen J, Ding H S, Chen R R, Xu X. Mater Rev, 2005; 19(3): 118 (郑循强,沈军,丁宏升,陈瑞润,许雄.材料导报,2005; 19(3): 118)
[8] Yamaguchi M, Johnson D R, Lee H N, Inui H. Inter- metallics, 2000; 8: 511
[9] Inui H, Oh M H, Nakamura A, Yamaguchi M. Acta Mater, 1992; 40: 3095
[10] Rutter J W, Chalmers B. Can J Phys, 1953; 31: 29
[11] Hu H Q. Solidification Principle of Metals. Beijing: China Machine Press, 2000: 130 (胡汉起.金属凝固原理.北京:机械工业出版社,2000:130)
[12] Xu Y. Electromagnetism. Nanjing: Jiangsu Science and Technology Press, 1987: 281 (徐游.电磁学.南京;江苏科学技术出版社, 1987:281)
[13] Zi B T, Ba Q X, Cui J Z, Bai Y X. Acta Phys Sin, 2000; 49: 1010 (訾炳涛,巴启先,崔建忠,白玉先.物理学报,2000;49:1010)
[14] Zhang Q, Ban C Y, Cui J Z, Ba Q X, Lu G M, Zhang B J. Acta Phys Sin, 2003; 52: 2642 (张勤,班春燕,崔建忠,巴启先,路贵民,张北江.物理学报,2003;52:2642)
[15] Shi H F, Xiao L, Liu Q. Nonferrous Met, 2004; 56: 21 (时海芳,肖莉,刘晴.有色金属,2004;56:21)
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
[5] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[6] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[7] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[8] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[9] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[10] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[11] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[12] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[13] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[14] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[15] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
No Suggested Reading articles found!