Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (6): 611-616     DOI:
Research Articles Current Issue | Archive | Adv Search |
Influence of Deformation Temperature on the Microstructure Transformation in Medium Carbon Steel
HUI Weijun; TIAN Peng; DONG Han; SU Shihuai; YU Tongren; WENG Yuqing
Institute of Structural Materials; Central Iron & Steel Research Institute; Beijing 100081; Ma'anshan Iron & Steel Co. Ltd.; Ma'anshan 243000
Cite this article: 

HUI Weijun; TIAN Peng; DONG Han; SU Shihuai; YU Tongren; WENG Yuqing. Influence of Deformation Temperature on the Microstructure Transformation in Medium Carbon Steel. Acta Metall Sin, 2005, 41(6): 611-616 .

Download:  PDF(417KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  During uniaxial hot compression for a medium carbon steel, the deformation induced ferrite (DIF) appeared when deformed temperatures lower than A d3 (786 ℃). The volume fraction of DIF increases with decreasing deformation temperature, especially when deformed temperatures lower than 750 ℃ the volume fraction of DIF increases significantly, which is far beyond the equilibrium ferrite fraction of 54%. With the increase of DIF, more and more carbon atoms were rejected into the boundaries of ferrite and interfaces of ferrite/untransformed austenite. During isothermal holding below A1 (719 ℃) temperature just after deformation, supercooled austenite would decompose to different structures in three different ways: when the deformation temperature is higher than Ad3, conventional ferrite-lamellar pearlite structure was obtained; when the deformation temperature is lower than Ad3 whereas higher than Ar3 (645 ℃), retained austenite transformed to ferrite-lamellar or degenerated pearlite-grain boundary cementite; when the deformation temperature decreased to just above Ad3, a microstructure different from lamellar pearlite was obtained, which consisted of fine cementite particle and ferrite.
Key words:  deformation temperature      medium carbon steel      microstructure evolution      
Received:  15 September 2004     
ZTFLH:  TG111  
  TG142  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I6/611

[1]Weng Y Q.Iron Steel,2003;38(5):1 (翁宇庆.钢铁,2003;38(5);1)
[2]Tsuji N.Tetsu Hagane,2002;88:359 (辻伸泰.铁之钢,2002;88:359)
[3]Li W J,Wang G D,Liu X H.In:Workshop on New Generation Steel (NG Steel'2001),Beijing:The Chinese Society for Metals,2001:311 (李维娟,王国栋,刘相华.见:新一代钢铁材料研讨会,北京,中国金属学会,2001:311)
[4]Tian Z X,Yang P,Sun Z Q.Trans Mater Heat Treat,2003;24(3):18 (田朝旭,杨平,孙祖庆.材料热处理学报,2003;24(3):18)
[5]O'Brien J M,Hosford W F.Metall Mater Trans,2002;33A:1255
[6]Park J,Song D H,Lee D,Choo W Y.In:Zhu Y T,Lang-don T G,Mishra R S,Semiatin S L,Saran M J,Lowe T C,eds.,Ultrafine Grained Materials Ⅱ,Seattle:The Minerals,Metals & Materials Society,2002:275
[7]Storojeva L,Kaspar R,Ponge D.Mater Sci Forum,2003;426-432:1169
[8]Weng Y Q,et al.Ultrafine Grained Steels-The Theory of Microstructure Refinement and Controlling Technology for Steels.Beijing:Metallurgical Industry Press,2003:140,118 (翁宇庆,等.超细晶钢——钢的组织细化理论与控制技术.北京,冶金工业出版社,2003:140,118)
[9]McQueen H J,Ryan N D.Mater Sci Eng,2002;A322:43
[10]An Y Z.Heat Treatment Technology.Beijing:China Machine Press,1982:51 (安运铮.热处理工艺学.北京:机械工业出版社,1982:51)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[4] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[5] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[6] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[8] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[9] LIU Chao, YAO Zhihao, GUO Jing, PENG Zichao, JIANG He, DONG Jianxin. Microstructure Evolution Behavior of Powder Superalloy FGH4720Li at Near Service Temperature[J]. 金属学报, 2021, 57(12): 1549-1558.
[10] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[11] WU Yun, LIU Yahui, KANG Maodong, GAO Haiyan, WANG Jun, SUN Baode. Microstructure Evolution of K4169 Alloy During Cyclic Loading[J]. 金属学报, 2020, 56(9): 1185-1194.
[12] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[13] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[14] Shixin XU, Wei YU, Shujia LI, Kun WANG, Qisong SUN. Effects of Pre-Deformation Temperature on Nanobainite Transformation Kinetics and Microstructure[J]. 金属学报, 2018, 54(8): 1113-1121.
[15] Huidong WU, Goro MIYAMOTO, Zhigang YANG, Chi ZHANG, Hao CHEN, Tadashi FURUHARA. Incomplete Bainite Transformation Accompanied with Cementite Precipitation in Fe-1.5(3.0)%Si-0.4%C Alloys[J]. 金属学报, 2018, 54(3): 367-376.
No Suggested Reading articles found!