Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (6): 617-621     DOI:
Research Articles Current Issue | Archive | Adv Search |
Electronic Structure Characterization of Bonding of Grain Boundaries and Fracture Mode of Steels
ZHANG Xiaozhong; ZHANG Lina; MA Yue; QI Junjie; YUAN Jun
Department of Materials Science and Engineering; Tsinghua University; Beijing 100084
Cite this article: 

ZHANG Xiaozhong; ZHANG Lina; MA Yue; QI Junjie; YUAN Jun. Electronic Structure Characterization of Bonding of Grain Boundaries and Fracture Mode of Steels. Acta Metall Sin, 2005, 41(6): 617-621 .

Download:  PDF(246KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Electron energy loss spectroscopy (EELS) was used to study grain boundaries in steels. The normalized 3d occupancies of states of irons both in bulk and at grain boundary were calculated according to the EELS data which are related to the change in the bonding of grain boundaries and the fracture mode of the steels. It is found that if the grain boundary (GB) has a higher occupancy of 3d states of iron than that of the bulk, the sample has a weak bonding of GB and tends to intergranular fracture. Otherwise if the GB has almost the same occupancy of 3d state of iron as the bulk, the sample has a strong bonding of GB and tends to transgranular fracture.
Key words:  steel      electronic structure      grain boundary      
Received:  13 September 2004     
ZTFLH:  TG142  
  O43  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I6/617

[1]Spence J C H.Mater Sci Eng,1999;26R:1
[2]Zhu J,Ye H Q,Wang R H,Wen S L,Kang Z C.Analytical Electron Microscopy with High Space Resolution.Beijing: Science Press,1998:277 (朱静,叶恒强,王仁卉,温树林,康振川.高空间分辨分析电子显微学.北京:科学出版社,1998:277)
[3]Egerton R F.Electron Energy-loss Spectroscopy in the Electron Microscope.2nd ed.,New York:Plenum Press,1996:301
[4]Titchmarsh J M.Ultramicroscopy,1999;78:241
[5]Kiguchi M,Goto T,Saiki K,Sasaki T,Iwasawa Y,Koma A.Surf Sci,2002;512:97
[6]Pantel R,Wehbe-Alause H,Jullian S,Kwakman L F T. Microelectr Eng,2002;64:91
[7]Wang Z L,Bentley J,Evans N D.Micron,2000;31:355
[8]Yu-Zhang K,Imhoff D,Leprince-Wang Y,Roy E,Zhou S M,Chien C L.Acta Mater,2003;51:1157
[9]Wang Z L,Yin J S,Jiang Y D.Micron,2000;31:571
[10]Pearson D H,Ahn C C,Fultz B.Phys Rev,1993;47B:8471
[11]Pearson D H,Ahn C C,Fultz B.Phys Rev,1994;50B:12969
[12]Muller D A,Subramanian S,Batson P E,Sass S L,Silcox J.Phys Rev Lett,1995;75:4744
[13]Muller D A.Subramanian S,Batson P E,Silcox J,Sass S L.Acta Mater,1996;44:1637
[14]Zhang X Z,Ma Y,Wang M Q,Brown L M,Zhang L N.ISIJ Int,2003;143:671
[15]Ozkaya D,Yuan J,Brown L M,Flewitt P E J.J Microscopy-Oxford,1995;180:300
[16]Ozkaya D,Yuan J,Brown L M.Inst Phys Conf Ser,1995;147:345
[17]Geng W T,Freeman A J,Wu R,Olson G B.Phys Rev,2000;62B:6208
[1] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[7] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[8] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[9] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[10] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[11] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[12] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[13] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[14] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[15] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
No Suggested Reading articles found!