Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (6): 605-610     DOI:
Research Articles Current Issue | Archive | Adv Search |
Kinetics of Structure Evolution During Deformation Enhanced Transformation in a Low Carbon Steel SS400
QI Junjie; YANG Wangyue; SUN Zuqing; ZHANG Xiaozhong; DONG Zhifeng
Department of Materials Science and Engineering; Tsinghua University; Beijing 100084; Department of Materials Science & Engineering; University of Science & Technology Beijing; Beijing 100083
Cite this article: 

QI Junjie; YANG Wangyue; SUN Zuqing; ZHANG Xiaozhong; DONG Zhifeng. Kinetics of Structure Evolution During Deformation Enhanced Transformation in a Low Carbon Steel SS400. Acta Metall Sin, 2005, 41(6): 605-610 .

Download:  PDF(234KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Quantitative characterization of microstructural evolution during deformation enhanced transformation in a low carbon steel SS400 was investigated on a Gleeble 1500 machine. General conclusions of the austenite transformation kinetics were formulated. It was shown that the transformation process can be divided into three stages according to the characteristics of transformation kinetics: The kinetics equations of two early stages fitted well in with the J-M-A equation. The kinetics of the first stage obeys Cahn's site saturation mechanism, the kinetics parameter n=4 which indicates the ferrite nucleates at austenite grain boundaries and triple points. Kinetics of the second stage doesn't obey Cahn's theory, the kinetics parameter n=1.0-1.5, corresponding to ferrite nucleating repeatedly at the high stored energy areas in front of the ferrite/austenite interface. The kinetics doesn't obey the J-M-A equation anymore in the final stage, and only few nucleation sites left at this moment. Deformation promotes the growth of ferrite grains, the growing rate of ferrite in the early stage of DEFT was calculated.
Key words:  low carbon steel      deformation enhanced transformation      kinetics      
Received:  09 October 2004     
ZTFLH:  TG142  
  O7  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I6/605

[1]Mintz B,Abu-Shosha R,Shaker M.Mater Sci Technol,1993;9:907
[2]Mintz B,Lewis H,Jonas J J.Mater Sci Technol,1997;13:379
[3]Hurley P J,Hodgson P D,Muddle B C.Scr Mater,1999;40:433
[4]Hurley P J,Hodgson P D.Mater Sci Eng,2001;A302:206
[5]Hickson M R,Hurley P J,Gibbs R K,Kelly G L,Hodgson P D.Metall Mater Trans,2002;33A:1019
[6]Yang W Y,Hu A M,Qi J J,Sun Z Q.Acta Metall Sin,2000;36:1192 (杨王明,胡安民,齐俊杰,孙祖庆.金属学报,2000;36:1192)
[7]Cahn J W.Acta Metall,1956;9:449
[8]Khlestov V M,Konopleva E V,Mcqueen H J.Can Metall Q,1998;37:75
[9]Li J,Sun F Y.Acta Metall Sin,1990;26:A378 (李箭,孙福玉.金属学报,1990;26:A378)
[10]Yang P,Fu Y Y,Cui F E,Sun Z Q.Acta Metall Sm,2001;37:617 (杨平,傅云义,崔凤娥,孙祖庆.金属学报,2001;37:617)
[11]Tamura Imao.Iron Steel,1985;20(1):64 (田村今男 钢铁,1985;20(1):64)
[12]Qi J J,Yang W Y,Sun Z Q.Acta Metall Sm,2002;38:897 (齐俊杰,杨王玥,孙祖庆.金属学报,2002;38:897)
[1] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[2] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[3] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[5] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[6] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[7] GUO Lu, ZHU Qianke, CHEN Zhe, ZHANG Kewei, JIANG Yong. Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy[J]. 金属学报, 2022, 58(6): 799-806.
[8] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[9] XU Kun, WANG Haichuan, KONG Hui, WU Zhaoyang, ZHANG Zhan. Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model[J]. 金属学报, 2021, 57(6): 822-830.
[10] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[11] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[12] Canshuai LIU,Zhaohui TIAN,Zhiming ZHANG,Jianqiu WANG,En-Hou HAN. Corrosion Behaivour of X65 Low Carbon Steel During Redox State Transition Process of High LevelNuclear Waste Disposal[J]. 金属学报, 2019, 55(7): 849-858.
[13] Shixin XU, Wei YU, Shujia LI, Kun WANG, Qisong SUN. Effects of Pre-Deformation Temperature on Nanobainite Transformation Kinetics and Microstructure[J]. 金属学报, 2018, 54(8): 1113-1121.
[14] Ke ZHANG, Xinjun SUN, Mingya ZHANG, Zhaodong LI, Xiaoyu YE, Zhenghai ZHU, Zhenyi HUANG, Qilong YONG. Kinetics of (Ti, V, Mo)C Precipitated in γ /α Matrix of Ti-V-Mo Complex Microalloyed Steel[J]. 金属学报, 2018, 54(8): 1122-1130.
[15] Shuaipeng WANG, Wenhua LUO, Gan LI, Haibo LI, Guangfeng ZHANG. Effect of La Content on Hydriding Kinetics of Ce-La Alloys[J]. 金属学报, 2018, 54(8): 1187-1192.
No Suggested Reading articles found!